Bayesian data-driven discovery of partial differential equations with variable coefficients
- URL: http://arxiv.org/abs/2102.01432v2
- Date: Tue, 26 Mar 2024 08:21:24 GMT
- Title: Bayesian data-driven discovery of partial differential equations with variable coefficients
- Authors: Aoxue Chen, Yifan Du, Liyao Mars Gao, Guang Lin,
- Abstract summary: We propose an advanced Bayesian sparse learning algorithm for PDE discovery with variable coefficients.
In the experiments, we show that the tBGL-SS method is more robust than the baseline methods under noisy environments.
- Score: 9.331440154110117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of Partial Differential Equations (PDEs) is an essential task for applied science and engineering. However, data-driven discovery of PDEs is generally challenging, primarily stemming from the sensitivity of the discovered equation to noise and the complexities of model selection. In this work, we propose an advanced Bayesian sparse learning algorithm for PDE discovery with variable coefficients, predominantly when the coefficients are spatially or temporally dependent. Specifically, we apply threshold Bayesian group Lasso regression with a spike-and-slab prior (tBGL-SS) and leverage a Gibbs sampler for Bayesian posterior estimation of PDE coefficients. This approach not only enhances the robustness of point estimation with valid uncertainty quantification but also relaxes the computational burden from Bayesian inference through the integration of coefficient thresholds as an approximate MCMC method. Moreover, from the quantified uncertainties, we propose a Bayesian total error bar criteria for model selection, which outperforms classic metrics including the root mean square and the Akaike information criterion. The capability of this method is illustrated by the discovery of several classical benchmark PDEs with spatially or temporally varying coefficients from solution data obtained from the reference simulations. In the experiments, we show that the tBGL-SS method is more robust than the baseline methods under noisy environments and provides better model selection criteria along the regularization path.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Adaptation of uncertainty-penalized Bayesian information criterion for parametric partial differential equation discovery [1.1049608786515839]
We introduce an extension of the uncertainty-penalized Bayesian information criterion (UBIC) to solve parametric PDE discovery problems efficiently.
UBIC uses quantified PDE uncertainty over different temporal or spatial points to prevent overfitting in model selection.
We show that our extended UBIC can identify the true number of terms and their varying coefficients accurately, even in the presence of noise.
arXiv Detail & Related papers (2024-08-15T12:10:50Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
We show empirical success in terms of accuracy and robustness to noise with bootstrapping-based sequential thresholding least-squares estimator.
We show that this bootstrapping-based ensembling technique can perform a provably correct variable selection procedure with an exponential convergence rate of the error rate.
arXiv Detail & Related papers (2023-01-30T04:07:59Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
arXiv Detail & Related papers (2022-10-14T15:20:17Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Parsimony-Enhanced Sparse Bayesian Learning for Robust Discovery of
Partial Differential Equations [5.584060970507507]
A Parsimony Enhanced Sparse Bayesian Learning (PeSBL) method is developed for discovering the governing Partial Differential Equations (PDEs) of nonlinear dynamical systems.
Results of numerical case studies indicate that the governing PDEs of many canonical dynamical systems can be correctly identified using the proposed PeSBL method.
arXiv Detail & Related papers (2021-07-08T00:56:11Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data [2.4431531175170362]
In this work, a new framework, which combines neural network, genetic algorithm and adaptive methods, is put forward to address all of these challenges simultaneously.
A trained neural network is utilized to calculate derivatives and generate a large amount of meta-data, which solves the problem of sparse noisy data.
Next, genetic algorithm is utilized to discover the form of PDEs and corresponding coefficients with an incomplete candidate library.
A two-step adaptive method is introduced to discover parametric PDEs with spatially- or temporally-varying coefficients.
arXiv Detail & Related papers (2020-05-16T09:09:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.