論文の概要: Drift Estimation with Graphical Models
- arxiv url: http://arxiv.org/abs/2102.01458v1
- Date: Tue, 2 Feb 2021 12:24:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-04 10:16:26.280824
- Title: Drift Estimation with Graphical Models
- Title(参考訳): グラフィカルモデルによるドリフト推定
- Authors: Luigi Riso and Marco Guerzoni
- Abstract要約: グラフィカルモデルを用いて、データの可視構造を抽出し、隠れたコンテキストの変化から推測する。
本研究は,オーストラリア電力市場における実世界データを用いた評価手法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper deals with the issue of concept drift in supervised machine
learn-ing. We make use of graphical models to elicit the visible structure of
the dataand we infer from there changes in the hidden context. Differently from
previous concept-drift detection methods, this application does not depend on
the supervised machine learning model in use for a specific target variable,
but it tries to assess the concept drift as independent characteristic of the
evolution of a dataset. Specifically, we investigate how a graphical model
evolves by looking at the creation of new links and the disappearing of
existing ones in different time periods. The paper suggests a method that
highlights the changes and eventually produce a metric to evaluate the
stability over time. The paper evaluate the method with real world data on the
Australian Electric market.
- Abstract(参考訳): 本稿では,教師付き機械学習における概念ドリフトの問題を扱う。
私たちはグラフィカルモデルを使ってデータの可視構造を解明し、隠れたコンテキストの変化から推測します。
従来のコンセプトドリフト検出方法とは異なり、このアプリケーションは特定のターゲット変数で使用される教師付き機械学習モデルに依存しないが、データセットの進化の独立した特性として概念ドリフトを評価しようとする。
具体的には、新しいリンクの作成と、異なる期間に既存のリンクの消失を見て、グラフィカルモデルがどのように進化するかを調べる。
本稿は,変化を強調し,最終的に時間とともに安定性を評価する指標を提示する手法を提案する。
本研究は,オーストラリア電力市場における実世界データを用いた評価手法である。
関連論文リスト
- Reliable and Interpretable Drift Detection in Streams of Short Texts [2.4603302139672008]
データドリフトは、機械学習モデルの性能劣化につながる重要な要因の1つだ。
本稿では,大規模タスク指向対話システムにおけるモデルに依存しない変更点の検出と解釈のためのエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-28T15:14:54Z) - Deep Graph Reprogramming [112.34663053130073]
グラフニューラルネットワーク(GNN)に適したタスク再利用モデル「ディープグラフ再プログラミング」
本稿では,モデル再プログラミングパラダイムと並行して,革新的なデータ再プログラミングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-28T02:04:29Z) - On the Change of Decision Boundaries and Loss in Learning with Concept
Drift [8.686667049158476]
概念ドリフト(concept drift)とは、観測データを生成する分布が時間とともに変化する現象を指す。
ドリフトで学習するための多くの技術は、モデル一般化誤差を近似する量としてインターリーブテストトレイン誤差(ITTE)に依存している。
論文 参考訳(メタデータ) (2022-12-02T14:58:13Z) - Learning under Data Drift with Time-Varying Importance Weights [111.12216038318805]
本稿では,データ分布の段階的変化を検出するための時間変化確率スコアを提案する。
実装のさまざまな方法を示し、さまざまな問題について評価する。
論文 参考訳(メタデータ) (2022-10-04T07:21:49Z) - Change Detection for Local Explainability in Evolving Data Streams [72.4816340552763]
局所的特徴帰属法はポストホックやモデルに依存しない説明法として人気がある。
ローカルな属性が、ストリーミングやオンラインアプリケーションのような、現実的で絶えず変化する設定でどのように振る舞うかは、しばしば不明である。
局所変化と概念ドリフトを検出するフレキシブルでモデルに依存しないCDLEEDSを提案する。
論文 参考訳(メタデータ) (2022-09-06T18:38:34Z) - From Concept Drift to Model Degradation: An Overview on
Performance-Aware Drift Detectors [1.757501664210825]
予測機械学習モデルがトレーニングされたシステムの変化は、システムのライフサイクルにおけるパフォーマンス低下につながる可能性がある。
文献では、同じ種類のコンセプトドリフトと、様々な種類の同じ用語を指すために、異なる用語が用いられてきた。
この統一項の欠如は、異なる概念のドリフト変種を区別する上で混乱を引き起こす。
論文 参考訳(メタデータ) (2022-03-21T15:48:13Z) - Autoregressive based Drift Detection Method [0.0]
我々はADDMと呼ばれる自己回帰モデルに基づく新しい概念ドリフト検出手法を提案する。
以上の結果から,新しいドリフト検出法は最先端ドリフト検出法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-09T14:36:16Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [77.14319095965058]
グラフ上のノードレベルの予測にOOD問題を定式化する。
そこで我々は,探索から抽出までのリスク最小化という新たなドメイン不変学習手法を開発した。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Switching Scheme: A Novel Approach for Handling Incremental Concept
Drift in Real-World Data Sets [0.0]
概念ドリフトは、機械学習システムの予測性能に深刻な影響を与える可能性がある。
本研究では,実世界のデータセットの文脈における概念ドリフトの効果を分析する。
本稿では,機械学習モデルの再学習と更新の2つの原則を組み合わせたスイッチング方式を提案する。
論文 参考訳(メタデータ) (2020-11-05T10:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。