論文の概要: Optimization of the Variational Quantum Eigensolver for Quantum
Chemistry Applications
- arxiv url: http://arxiv.org/abs/2102.01781v3
- Date: Mon, 28 Feb 2022 16:01:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 00:20:39.881122
- Title: Optimization of the Variational Quantum Eigensolver for Quantum
Chemistry Applications
- Title(参考訳): 量子化学応用のための変分量子固有解法の最適化
- Authors: R.J.P.T. de Keijzer, V.E. Colussi, B. \v{S}kori\'c, and S.J.J.M.F.
Kokkelmans
- Abstract要約: 変分量子固有解法アルゴリズムは、量子力学系の基底状態を決定するように設計されている。
本研究では,変分量子固有解法において,必要な量子ビット操作数を減らし,誤りを誘発しがちな方法について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work studies the variational quantum eigensolver algorithm, designed to
determine the ground state of a quantum mechanical system by combining
classical and quantum hardware. Methods of reducing the number of required
qubit manipulations, prone to induce errors, for the variational quantum
eigensolver are studied. We formally justify the qubit removal process as
sketched by Bravyi, Gambetta, Mezzacapo and Temme [arXiv:1701.08213 (2017)].
Furthermore, different classical optimization and entangling methods, both gate
based and native, are surveyed by computing ground state energies of H$_2$ and
LiH. This paper aims to provide performance-based recommendations for
entangling methods and classical optimization methods. Analyzing the VQE
problem is complex, where the optimization algorithm, the method of entangling,
and the dimensionality of the search space all interact. In specific cases
however, concrete results can be shown, and an entangling method or
optimization algorithm can be recommended over others. In particular we find
that for high dimensionality (many qubits and/or entanglement depth) certain
classical optimization algorithms outperform others in terms of energy error.
- Abstract(参考訳): 本研究は,古典的および量子ハードウェアを組み合わせた量子力学系の基底状態を決定するために設計された変分量子固有解法アルゴリズムについて研究する。
変分量子固有解法において, 必要な量子ビット操作数を削減する手法, 誤差を誘発する可能性について検討した。
我々は、Bravyi, Gambetta, Mezzacapo, Temme[arXiv:1701.08213 (2017)]によってスケッチされたqubit除去過程を正式に正当化する。
さらに,h$_2$ および lih の基底状態エネルギーの計算により,ゲートベースおよびネイティブの異なる古典的最適化および絡み合い法について検討した。
本稿では,エンタングリング手法と古典最適化手法の性能に基づく提案を提案する。
VQE問題の解析は複雑であり、最適化アルゴリズム、絡み合う方法、探索空間の次元がすべて相互作用する。
しかし,具体例では具体的な結果が示され,他者よりも絡み合い手法や最適化アルゴリズムが推奨される。
特に、高次元(多くの量子ビットおよび/または絡み合い深さ)では、ある古典的最適化アルゴリズムがエネルギー誤差の点で他のアルゴリズムよりも優れていることが分かる。
関連論文リスト
- Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
古典学のパフォーマンスを、半ランダム化された一連のタスクで比較する。
量子システムにおける一般に好適な性能とクエリ効率のため、局所ゼロ階数に着目する。
論文 参考訳(メタデータ) (2023-10-14T02:13:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Pure Quantum Gradient Descent Algorithm and Full Quantum Variational
Eigensolver [0.7149735232319818]
勾配勾配勾配勾配法は広く採用されている最適化法である。
単一オラクル計算のみを必要とする新しい量子ベース勾配計算法を提案する。
我々は量子勾配降下法をうまく実装し、変分量子固有解法(VQE)に適用した。
論文 参考訳(メタデータ) (2023-05-07T05:52:41Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
変分量子アルゴリズム(英: Variational quantum algorithm)は、短期量子コンピュータで使用される技術の一種である。
実験的な測定をほとんど行わない変分回路のサロゲートモデルの学習について紹介する。
次に、元のデータとは対照的に、これらのモデルを用いてパラメータ最適化を行う。
論文 参考訳(メタデータ) (2022-04-12T00:15:17Z) - Stochastic optimization algorithms for quantum applications [0.0]
本稿では、一階法、二階法、量子自然勾配最適化法の使用法を概観し、複素数体で定義される新しいアルゴリズムを提案する。
全ての手法の性能は、変分量子固有解法、量子状態の量子制御、および量子状態推定に応用して評価される。
論文 参考訳(メタデータ) (2022-03-11T16:17:05Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Quantum Optimization Heuristics with an Application to Knapsack Problems [5.866941279460248]
本稿では,量子近似最適化アルゴリズム(QAOA)を制約付き最適化問題に適合させる2つの手法を提案する。
最初のテクニックでは、初期の量子状態と混合操作を定義し、量子最適化アルゴリズムを調整して、この初期欲求解に関する可能な解を探索する方法が述べられている。
第2の手法は、グリーディ溶液の周りの局所的なミニマを避けるために、量子探索に使用される。
論文 参考訳(メタデータ) (2021-08-19T17:22:44Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
本稿では, 絡み合いの役割, 変動量子回路の構造, 最適化問題の構造について検討する。
数値計算の結果,絡み合うゲートの分布を問題のトポロジに適応させる利点が示唆された。
リスク型コスト関数に条件値を適用することで最適化が向上し、最適解と重複する確率が増大することを示す。
論文 参考訳(メタデータ) (2021-03-26T14:06:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。