論文の概要: Pedestrian Simulation: A Review
- arxiv url: http://arxiv.org/abs/2102.03289v1
- Date: Fri, 5 Feb 2021 17:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-08 12:57:24.680348
- Title: Pedestrian Simulation: A Review
- Title(参考訳): 歩行者シミュレーション:レビュー
- Authors: Amir Rasouli
- Abstract要約: このレビューには、歩行者行動のモデル化に関わる粒度、テクニック、要因など、さまざまなモデリング基準が含まれている。
最後に,様々なシミュレーション手法の利点と欠点について考察し,今後の研究への提言を行う。
- 参考スコア(独自算出の注目度): 7.538482310185135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article focuses on different aspects of pedestrian (crowd) modeling and
simulation. The review includes: various modeling criteria, such as
granularity, techniques, and factors involved in modeling pedestrian behavior,
and different pedestrian simulation methods with a more detailed look at two
approaches for simulating pedestrian behavior in traffic scenes. At the end,
benefits and drawbacks of different simulation techniques are discussed and
recommendations are made for future research.
- Abstract(参考訳): 本稿では,歩行者のモデリングとシミュレーションのさまざまな側面に焦点を当てる。
このレビューには、歩行者の行動のモデル化に関わる粒度、技術、要因などの様々なモデリング基準と、交通シーンにおける歩行者の挙動をシミュレートするための2つのアプローチをより詳細に検討した歩行者シミュレーション手法が含まれる。
最後に,様々なシミュレーション手法の利点と欠点について考察し,今後の研究への提言を行う。
関連論文リスト
- Visual-information-driven model for crowd simulation using temporal convolutional network [1.712689361909955]
本稿では,視覚情報駆動(VID)群群シミュレーションモデルを提案する。
VIDモデルは、過去の社会的視覚情報と個人の動きデータに基づいて、次のステップで歩行者の速度を予測する。
歩行者の視覚情報を抽出するために,レーダ・ジオメトリ・ロコモーション法が確立された。
時空間畳み込みネットワーク(TCN)に基づく深層学習モデルであるSocial-visual TCNを開発した。
論文 参考訳(メタデータ) (2023-11-06T09:58:04Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - From Model-Based to Data-Driven Simulation: Challenges and Trends in
Autonomous Driving [26.397030011439163]
シミュレーションのさまざまな側面や種類に関して,課題の概要を述べる。
我々は、認識、行動、およびコンテンツリアリズムに関する側面と、シミュレーションの領域における一般的なハードルをカバーしている。
中でも,モデルベースシミュレーションの代替として,データ駆動型,生成的アプローチ,高忠実度データ合成の傾向が注目されている。
論文 参考訳(メタデータ) (2023-05-23T11:39:23Z) - Perception Imitation: Towards Synthesis-free Simulator for Autonomous
Vehicles [45.27200446670184]
本研究では,ある知覚モデルの結果をシミュレートする知覚模倣手法を提案し,データ合成を伴わない自律走行シミュレータの新たな経路について議論する。
実験により,本手法は学習に基づく知覚モデルの振る舞いをモデル化する上で有効であることが示され,提案手法のシミュレーション経路にさらにスムーズに適用可能である。
論文 参考訳(メタデータ) (2023-04-19T01:27:02Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
本調査は,モデリングとシミュレーションの分野における最近のトレンドを包括的に概観することを目的としている。
まずは、シミュレーターを実装するフレームワークの開発の背後にあるモチベーションから始めます。
我々は,既存のシミュレータの機能,近似,産業的有効性に基づいて,新しい一貫した一貫した分類を行う。
論文 参考訳(メタデータ) (2022-06-22T19:33:21Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z) - A Taxonomy and Review of Algorithms for Modeling and Predicting Human
Driver Behavior [36.80532606715206]
運転行動モデルに関する文献から200モデルのレビューと分類について述べる。
まず,対話型マルチエージェントトラフィックのダイナミクスを記述する数学的枠組みを導入する。
我々の分類学は、状態推定、意図推定、特性推定、動き予測のコアモデリングタスクを中心に構築されている。
論文 参考訳(メタデータ) (2020-06-15T23:53:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。