論文の概要: A Taxonomy and Review of Algorithms for Modeling and Predicting Human
Driver Behavior
- arxiv url: http://arxiv.org/abs/2006.08832v3
- Date: Sun, 29 Nov 2020 03:40:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 05:02:24.625941
- Title: A Taxonomy and Review of Algorithms for Modeling and Predicting Human
Driver Behavior
- Title(参考訳): 人間の運転行動のモデル化と予測のためのアルゴリズムの分類とレビュー
- Authors: Kyle Brown and Katherine Driggs-Campbell and Mykel J. Kochenderfer
- Abstract要約: 運転行動モデルに関する文献から200モデルのレビューと分類について述べる。
まず,対話型マルチエージェントトラフィックのダイナミクスを記述する数学的枠組みを導入する。
我々の分類学は、状態推定、意図推定、特性推定、動き予測のコアモデリングタスクを中心に構築されている。
- 参考スコア(独自算出の注目度): 36.80532606715206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a review and taxonomy of 200 models from the literature on driver
behavior modeling. We begin by introducing a mathematical framework for
describing the dynamics of interactive multi-agent traffic. Based on the
partially observable stochastic game, this framework provides a basis for
discussing different driver modeling techniques. Our taxonomy is constructed
around the core modeling tasks of state estimation, intention estimation, trait
estimation, and motion prediction, and also discusses the auxiliary tasks of
risk estimation, anomaly detection, behavior imitation and microscopic traffic
simulation. Existing driver models are categorized based on the specific tasks
they address and key attributes of their approach.
- Abstract(参考訳): 本稿では,ドライバ行動モデリングに関する文献から,200モデルのレビューと分類について述べる。
まず,対話型マルチエージェントトラフィックのダイナミクスを記述する数学的枠組みを導入する。
部分的に観察可能な確率ゲームに基づいて、このフレームワークは異なるドライバモデリング技術について議論する基礎を提供する。
本分類は, 状態推定, 意図推定, 特性推定, 動き予測のコアモデリングタスクを中心に構築され, リスク推定, 異常検出, 行動模倣, 微視的交通シミュレーションの補助タスクについても論じる。
既存のドライバモデルは、対処する特定のタスクとアプローチの重要な属性に基づいて分類される。
関連論文リスト
- Towards Efficient Modelling of String Dynamics: A Comparison of State Space and Koopman based Deep Learning Methods [8.654571696634825]
State Space Models (SSM) と Koopman に基づくディープラーニング手法は、線形および非線形の剛弦の力学をモデル化する。
以上の結果から,提案したクープマンモデルが,長周期モデリングにおける非線形ケースにおいて,他の既存手法と同等以上の性能を示すことが示唆された。
本研究は、これらの手法と過去の手法の比較概要を提供し、モデル改善のための革新的な戦略を導入することにより、力学系の物理モデリングに関する洞察を貢献する。
論文 参考訳(メタデータ) (2024-08-29T15:55:27Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Smooth-Trajectron++: Augmenting the Trajectron++ behaviour prediction
model with smooth attention [0.0]
本研究では,注目モジュールにスムーズな項を組み込んだトラジェクトリ予測モデルであるTrjectron++について検討する。
この注意機構は、注意切り替えの限界を示す認知科学の研究にインスパイアされた人間の注意を模倣する。
得られたSmooth-Trajectron++モデルの性能を評価し、様々なベンチマークで元のモデルと比較する。
論文 参考訳(メタデータ) (2023-05-31T09:19:55Z) - Car-Following Models: A Multidisciplinary Review [35.57095196826516]
自動車追従モデルには、交通工学、物理学、動的システム制御、認知科学、機械学習、強化学習など、様々な分野が含まれる。
それは、理論に基づくキネマティックモデル、心理物理モデル、適応クルーズ制御モデルから強化学習(RL)や模倣学習(IL)のようなデータ駆動アルゴリズムまで、代表的アルゴリズムをレビューする。
論文 参考訳(メタデータ) (2023-04-14T14:06:33Z) - Are Neural Topic Models Broken? [81.15470302729638]
トピックモデルの自動評価と人的評価の関係について検討する。
ニューラルトピックモデルは、確立された古典的手法と比較して、両方の点においてより悪くなる。
論文 参考訳(メタデータ) (2022-10-28T14:38:50Z) - IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction [24.94160059351764]
ほとんどの自動車追従モデルは生成的であり、最後のステップの速度、位置、加速度の入力のみを考慮する。
2つの独立したエンコーダと、次の軌道を逐次予測できる自己アテンションデコーダを備えた新しい構造を実装した。
シミュレーションとNGSIMデータセットの複数の設定による数値実験により、IMM-Followerは予測性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2022-10-20T02:24:27Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
モデルに基づく強化学習は、データからテクトダイナミックスモデルを学習し、そのモデルを使用して振る舞いを最適化する。
本稿では, 動的モデル学習における設計選択の役割を, 基礎構造モデルとの比較により明らかにすることを目的としている。
論文 参考訳(メタデータ) (2021-09-29T09:50:25Z) - Bidirectional Interaction between Visual and Motor Generative Models
using Predictive Coding and Active Inference [68.8204255655161]
本稿では,感覚予測のための生成モデルと,運動軌跡の生成モデルからなるニューラルアーキテクチャを提案する。
我々は,知覚予測のシーケンスが学習,制御,オンライン適応を導くレールとしてどのように機能するかを強調する。
論文 参考訳(メタデータ) (2021-04-19T09:41:31Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
我々は、前向きモデルや後向きモデルによる後向き操作による予測として使われる計画の利益と特異性を理解するために活動する。
本稿では,予測を(再)評価すべき状態の選択に主眼を置いて,計画におけるモデルの利用について検討する。
論文 参考訳(メタデータ) (2020-10-26T16:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。