論文の概要: Learning with Density Matrices and Random Features
- arxiv url: http://arxiv.org/abs/2102.04394v5
- Date: Tue, 30 Apr 2024 17:37:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 20:26:54.566386
- Title: Learning with Density Matrices and Random Features
- Title(参考訳): 密度行列とランダム特徴を用いた学習
- Authors: Fabio A. González, Alejandro Gallego, Santiago Toledo-Cortés, Vladimir Vargas-Calderón,
- Abstract要約: 密度行列は、量子系の統計状態を記述する。
量子系の量子的不確実性と古典的不確実性の両方を表現することは強力な形式主義である。
本稿では,機械学習モデルのビルディングブロックとして密度行列をどのように利用できるかを検討する。
- 参考スコア(独自算出の注目度): 44.98964870180375
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A density matrix describes the statistical state of a quantum system. It is a powerful formalism to represent both the quantum and classical uncertainty of quantum systems and to express different statistical operations such as measurement, system combination and expectations as linear algebra operations. This paper explores how density matrices can be used as a building block for machine learning models exploiting their ability to straightforwardly combine linear algebra and probability. One of the main results of the paper is to show that density matrices coupled with random Fourier features could approximate arbitrary probability distributions over $\mathbb{R}^n$. Based on this finding the paper builds different models for density estimation, classification and regression. These models are differentiable, so it is possible to integrate them with other differentiable components, such as deep learning architectures and to learn their parameters using gradient-based optimization. In addition, the paper presents optimization-less training strategies based on estimation and model averaging. The models are evaluated in benchmark tasks and the results are reported and discussed.
- Abstract(参考訳): 密度行列は、量子系の統計状態を記述する。
量子系の量子的不確実性と古典的不確実性の両方を表現し、測定、システムの組み合わせ、期待などの異なる統計操作を線形代数演算として表現することは強力な形式主義である。
本稿では,線形代数と確率を直接組み合わせた機械学習モデルの構築ブロックとして,密度行列をどのように利用できるかを検討する。
この論文の主な成果の1つは、ランダムなフーリエ特徴と組み合わされた密度行列が、$\mathbb{R}^n$ 上の任意の確率分布を近似できることを示すことである。
この発見に基づいて、本論文は密度推定、分類、回帰の異なるモデルを構築した。
これらのモデルは微分可能であり、ディープラーニングアーキテクチャのような他の異なるコンポーネントと統合することができ、勾配に基づく最適化を用いてパラメータを学習することができる。
さらに,推定とモデル平均化に基づく最適化レストレーニング戦略を提案する。
モデルはベンチマークタスクで評価され、その結果が報告され、議論される。
関連論文リスト
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Kernel Density Matrices for Probabilistic Deep Learning [8.486487001779416]
量子力学において、密度行列は量子系の状態を記述する最も一般的な方法である。
本稿では,確率的深層学習,カーネル密度行列に対する新しいアプローチを提案する。
これは連続確率変数と離散確率変数の両方の結合確率分布を表現するためのより単純で効果的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-05-26T12:59:58Z) - AD-DMKDE: Anomaly Detection through Density Matrices and Fourier
Features [0.0]
この方法は、カーネル密度推定(KDE)の効率的な近似と見なすことができる。
提案手法を, 各種データセット上での11種類の最先端異常検出手法と体系的に比較した。
論文 参考訳(メタデータ) (2022-10-26T15:43:16Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
あらゆる微分方程式をガウス過程に統合できる枠組みを提案する。
本手法は,シミュレーションと実世界の応用の両方において,バニラGPの改善を示す。
論文 参考訳(メタデータ) (2022-02-24T19:02:14Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
本稿ではランダム行列理論の手法を用いて、単純な線形回帰に対して理想的なトレーニング-テストデータ分割を求める。
それは「理想」を整合性計量を満たすものとして定義し、すなわち経験的モデル誤差は実際の測定ノイズである。
本論文は,任意のモデルのトレーニングとテストサイズを,真に最適な方法で解決した最初の論文である。
論文 参考訳(メタデータ) (2021-12-11T13:18:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。