論文の概要: EventScore: An Automated Real-time Early Warning Score for Clinical
Events
- arxiv url: http://arxiv.org/abs/2102.05958v2
- Date: Sun, 14 Feb 2021 03:49:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-16 12:28:10.693724
- Title: EventScore: An Automated Real-time Early Warning Score for Clinical
Events
- Title(参考訳): EventScore: 臨床イベントのための自動リアルタイム早期警告スコア
- Authors: Ibrahim Hammoud, Prateek Prasanna, IV Ramakrishnan, Adam Singer, Mark
Henry, Henry Thode
- Abstract要約: 臨床劣化を示す各種臨床事象の早期予測のための解釈可能なモデルを構築した。
このモデルは2つのデータセットと4つの臨床イベントで評価される。
私達のモデルは手動で記録された特徴を要求しないで完全に自動化することができます。
- 参考スコア(独自算出の注目度): 3.3039612529376625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early prediction of patients at risk of clinical deterioration can help
physicians intervene and alter their clinical course towards better outcomes.
In addition to the accuracy requirement, early warning systems must make the
predictions early enough to give physicians enough time to intervene.
Interpretability is also one of the challenges when building such systems since
being able to justify the reasoning behind model decisions is desirable in
clinical practice. In this work, we built an interpretable model for the early
prediction of various adverse clinical events indicative of clinical
deterioration. The model is evaluated on two datasets and four clinical events.
The first dataset is collected in a predominantly COVID-19 positive population
at Stony Brook Hospital. The second dataset is the MIMIC III dataset. The model
was trained to provide early warning scores for ventilation, ICU transfer, and
mortality prediction tasks on the Stony Brook Hospital dataset and to predict
mortality and the need for vasopressors on the MIMIC III dataset. Our model
first separates each feature into multiple ranges and then uses logistic
regression with lasso penalization to select the subset of ranges for each
feature. The model training is completely automated and doesn't require expert
knowledge like other early warning scores. We compare our model to the Modified
Early Warning Score (MEWS) and quick SOFA (qSOFA), commonly used in hospitals.
We show that our model outperforms these models in the area under the receiver
operating characteristic curve (AUROC) while having a similar or better median
detection time on all clinical events, even when using fewer features. Unlike
MEWS and qSOFA, our model can be entirely automated without requiring any
manually recorded features. We also show that discretization improves model
performance by comparing our model to a baseline logistic regression model.
- Abstract(参考訳): 臨床劣化のリスクのある患者の早期予測は、医師が介入し、より良い結果に向けて臨床経過を変えるのに役立つ。
精度の要件に加えて、早期の警告システムは、医師が介入するのに十分な時間を与えるのに十分な予測を早めなければならない。
モデル決定の背後にある理由を正当化することができることが臨床で望ましいため、そのようなシステムを構築する際の課題の一つでもある。
本研究は,臨床劣化を示唆する種々の有害な臨床事象の早期予測のための解釈可能なモデルを構築した。
このモデルは2つのデータセットと4つの臨床イベントで評価される。
最初のデータセットは、Stony Brook Hospitalで主に新型コロナウイルス陽性人口で収集されています。
2番目のデータセットはMIMIC IIIデータセットです。
このモデルは、ストーニーブルック病院のデータセットで換気、ICU転送、死亡予測タスクの早期警告スコアを提供し、MIMIC IIIデータセット上での死亡率と血管圧剤の必要性を予測するために訓練された。
我々のモデルはまず各機能を複数の範囲に分割し、次にラッソペナリゼーションを用いたロジスティック回帰を用いて各特徴に対する範囲のサブセットを選択する。
モデルトレーニングは完全に自動化されており、他の早期警告スコアのような専門的な知識は必要ありません。
当モデルとMEWS (Modified Early Warning Score) と, 病院で一般的に使用されるクイックSOFA (qSOFA) を比較した。
本モデルでは, 受信機動作特性曲線 (AUROC) の領域において, より少ない特徴を用いても, 全臨床イベントにおいて, 同様の, より優れた中央値検出時間を持ちながら, これらのモデルよりも優れていることを示す。
MEWSやqSOFAとは異なり、我々のモデルは手動で記録する機能なしで完全に自動化できる。
また, モデルとベースラインのロジスティック回帰モデルを比較することで, モデル性能を改善できることを示した。
関連論文リスト
- Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
グラディエントブースティングモデル(GBM)は、トレーニング速度、解釈可能性、信頼性の点で、シーケンシャルモデルを上回った。
タイムリーな介入のために5分間の予測ウィンドウが選択された。
本研究は、トリアージを改善し、アラーム疲労を軽減するMLの可能性を強調した。
論文 参考訳(メタデータ) (2024-10-30T23:24:28Z) - Enhancing Uncertain Demand Prediction in Hospitals Using Simple and Advanced Machine Learning [3.9054437595657534]
イスラエルのランバム医療センターの患者ケア需要データを用いて, 両モデルが時間差の患者需要を効果的に捉えていることを示す。
機械学習を用いて3日または1週間前に、患者のケア需要を精度よく予測できる(約4人)。
論文 参考訳(メタデータ) (2024-04-29T13:05:59Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
我々は、最先端の医療自動化機械学習モデルを再現し、比較し、分析する。
その結果, 弱い構成, サンプル化の不十分さ, 評価の不十分さなどにより, いくつかのモデルの性能が低下していることが判明した。
再生モデルを用いたMIMIC-IVデータセットの総合評価を行った。
論文 参考訳(メタデータ) (2023-04-21T11:54:44Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - A Machine Learning Model for Predicting, Diagnosing, and Mitigating
Health Disparities in Hospital Readmission [0.0]
本稿では,データ中のバイアスの検出と緩和とモデル予測が可能な機械学習パイプラインを提案する。
提案手法の有効性を,精度と公正度の測定値を用いて評価した。
論文 参考訳(メタデータ) (2022-06-13T16:07:25Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
そこで本研究では,SAPS IIスコアと同じ特徴を用いた深層学習モデルを提案する。
よく知られた臨床データセットである医療情報マート(Medical Information Mart for Intensive Care III)に基づいていくつかの実験が行われている。
論文 参考訳(メタデータ) (2020-12-11T16:27:04Z) - Learning transition times in event sequences: the Event-Based Hidden
Markov Model of disease progression [4.12857285066818]
我々は、イベントベースと隠れマルコフモデリングのアイデアを結びつけて、疾患進行の新しい生成モデルを作成する。
我々のモデルは、限られたデータセットから最も可能性の高いグループレベルのシーケンスとイベントのタイミングを推測することができる。
我々は,アルツハイマー病神経画像イニシアチブの臨床的,画像的,バイオ流体的データを用いて,我々のモデルの有効性と有用性を実証した。
論文 参考訳(メタデータ) (2020-11-02T15:13:03Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。