論文の概要: An Ensemble Deep Convolutional Neural Network Model for Electricity
Theft Detection in Smart Grids
- arxiv url: http://arxiv.org/abs/2102.06039v1
- Date: Wed, 10 Feb 2021 18:27:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-12 14:10:36.513221
- Title: An Ensemble Deep Convolutional Neural Network Model for Electricity
Theft Detection in Smart Grids
- Title(参考訳): スマートグリッドにおける電気的盗難検出のための深部畳み込みニューラルネットワークモデル
- Authors: Hossein Mohammadi Rouzbahani, Hadis Karimipour, Lei Lei
- Abstract要約: 電力盗難検知(EDT)アルゴリズムは、この非技術的損失(NTL)が電力システムにおいて重大な課題を引き起こす可能性があるため、一般的にそのような目的のために使用される。
本稿では,スマートグリッドにおけるETDのためのEnsemble Deep Convolutional Neural Network (EDCNN)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.281079191664481
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Smart grids extremely rely on Information and Communications Technology (ICT)
and smart meters to control and manage numerous parameters of the network.
However, using these infrastructures make smart grids more vulnerable to cyber
threats especially electricity theft. Electricity Theft Detection (EDT)
algorithms are typically used for such purpose since this Non-Technical Loss
(NTL) may lead to significant challenges in the power system. In this paper, an
Ensemble Deep Convolutional Neural Network (EDCNN) algorithm for ETD in smart
grids has been proposed. As the first layer of the model, a random under
bagging technique is applied to deal with the imbalance data, and then Deep
Convolutional Neural Networks (DCNN) are utilized on each subset. Finally, a
voting system is embedded, in the last part. The evaluation results based on
the Area Under Curve (AUC), precision, recall, f1-score, and accuracy verify
the efficiency of the proposed method compared to the existing method in the
literature.
- Abstract(参考訳): スマートグリッドは情報通信技術(ict)とスマートメーターに依存しており、ネットワークの様々なパラメータを制御・管理している。
しかし、これらのインフラストラクチャを使用することで、スマートグリッドはサイバー脅威、特に電気盗難に対してより脆弱になります。
電力盗難検出(EDT)アルゴリズムは、この非技術損失(NTL)が電力システムの重要な課題につながる可能性があるため、通常、そのような目的のために使用されます。
本稿では,スマートグリッドにおけるETDのためのEnsemble Deep Convolutional Neural Network (EDCNN)アルゴリズムを提案する。
モデルの最初の層として、不均衡データを扱うためにランダムなアンダーバギング技術が適用され、その後、各サブセットにDeep Convolutional Neural Networks(DCNN)が利用される。
最後に、最後の部分に投票システムが組み込まれています。
評価結果は, 曲線下領域 (auc) , 精度, 再現率, f1-score および精度に基づいて, 文献中の既存の方法と比較して, 提案手法の有効性を検証した。
関連論文リスト
- Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
ネットワーク侵入検知システム(NIDS)のための拡張畳み込みニューラルネットワーク(EnCNN)を提案する。
我々はEnCNNと、ロジスティック回帰、決定木、サポートベクトルマシン(SVM)、ランダムフォレスト、AdaBoost、Votting Ensembleといったアンサンブル手法など、さまざまな機械学習アルゴリズムを比較した。
その結果,EnCNNは検出精度を大幅に向上し,最先端アプローチよりも10%向上した。
論文 参考訳(メタデータ) (2024-09-27T11:20:20Z) - Machine-learned Adversarial Attacks against Fault Prediction Systems in
Smart Electrical Grids [17.268321134222667]
本研究では、スマートグリッドシナリオにおける機械学習(ML)アプリケーションのセキュリティに関する課題について検討する。
まず、スマートグリッドで使用されるディープニューラルネットワーク手法が、逆方向の摂動の影響を受けやすいことを実証する。
そこで本研究では,スマートグリッドにおける現在のMLアルゴリズムの弱点を,障害の局所化と型分類によって明らかにする方法について述べる。
論文 参考訳(メタデータ) (2023-03-28T10:19:03Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks [0.0]
本稿では,自己教師型ネットワーク侵入と異常検出のためのグラフニューラルネットワーク(GNN)の応用について検討する。
GNNは、グラフ構造を学習に組み込んだグラフベースのデータのためのディープラーニングアプローチである。
本稿では, エッジ特徴とグラフトポロジ構造を利用したGNNによる侵入・異常検出手法であるAnomal-Eを提案する。
論文 参考訳(メタデータ) (2022-07-14T10:59:39Z) - Deep Binary Reinforcement Learning for Scalable Verification [44.44006029119672]
バイナライズニューラルネットワーク(BNN)に特化したRLアルゴリズムを提案する。
Atari環境でBNNを訓練した後、ロバスト性特性を検証する。
論文 参考訳(メタデータ) (2022-03-11T01:20:23Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
大規模アクセスはIoT(Internet of Things)ネットワークにおける重要な設計課題である。
我々は、マルチアンテナベースステーション(BS)と多数の単一アンテナIoTデバイスを備えたIoTネットワークの無許可アップリンク伝送を検討する。
本稿では,低計算複雑性と高ロバスト性を実現するために,ディープニューラルネットワークに基づく新しいアルゴリズムアンローリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-19T05:23:05Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Artificial Intelligence based Sensor Data Analytics Framework for Remote
Electricity Network Condition Monitoring [0.0]
農村電化は、単一ワイヤアースリターン(SWER)ネットワークのような安価な技術の使用を要求する。
リモート消費者からのエネルギー需要は着実に増加しており、既存の路線の容量はすぐに不足する可能性がある。
SWERラインからの高インピーダンスアーク断層(HIF)は、2009年のブラックサタデーイベントのような壊滅的なブッシュファイアを引き起こす可能性があります。
論文 参考訳(メタデータ) (2021-01-21T07:50:01Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。