論文の概要: Uncertainty Propagation in Convolutional Neural Networks: Technical
Report
- arxiv url: http://arxiv.org/abs/2102.06064v1
- Date: Thu, 11 Feb 2021 15:17:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-12 14:10:18.861003
- Title: Uncertainty Propagation in Convolutional Neural Networks: Technical
Report
- Title(参考訳): 畳み込みニューラルネットワークにおける不確実性伝播:技術報告
- Authors: Christos Tzelepis and Ioannis Patras
- Abstract要約: 畳み込みニューラルネットワーク(CNN)の典型的な構成ブロックによる不確実性の伝播問題について検討する。
これには線形演算を行うレイヤや、Rectified Linear Unit (ReLU)のような入力に対して非線形に作用するレイヤが含まれる。
- 参考スコア(独自算出の注目度): 13.224071661974593
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this technical report we study the problem of propagation of uncertainty
(in terms of variances of given uni-variate normal random variables) through
typical building blocks of a Convolutional Neural Network (CNN). These include
layers that perform linear operations, such as 2D convolutions,
fully-connected, and average pooling layers, as well as layers that act
non-linearly on their input, such as the Rectified Linear Unit (ReLU). Finally,
we discuss the sigmoid function, for which we give approximations of its first-
and second-order moments, as well as the binary cross-entropy loss function,
for which we approximate its expected value under normal random inputs.
- Abstract(参考訳): この技術報告では、Convolutional Neural Network (CNN) の典型的なビルディングブロックを通じて、不確実性(与えられた一変数正規確率変数のばらつき)の伝播の問題について研究する。
これには2D畳み込み、完全接続層、平均プール層などの線形操作を行うレイヤや、Rectified Linear Unit (ReLU)のような入力に対して非線形に作用するレイヤが含まれる。
最後に、第一次および第二次モーメントの近似を与えるシグモイド関数と、通常のランダム入力の下でその期待値を近似する二元間エントロピー損失関数について議論する。
関連論文リスト
- Benign Overfitting for Regression with Trained Two-Layer ReLU Networks [14.36840959836957]
本稿では,2層完全連結ニューラルネットワークを用いた最小二乗回帰問題と,勾配流によるReLU活性化関数について検討する。
最初の結果は一般化結果であり、基礎となる回帰関数や、それらが有界であること以外のノイズを仮定する必要はない。
論文 参考訳(メタデータ) (2024-10-08T16:54:23Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Fast Convergence in Learning Two-Layer Neural Networks with Separable
Data [37.908159361149835]
2層ニューラルネット上の正規化勾配勾配について検討した。
正規化GDを用いてトレーニング損失の線形収束率を大域的最適に導くことを証明する。
論文 参考訳(メタデータ) (2023-05-22T20:30:10Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Sigmoid、ReLU、Tanhなどの非線形活性化関数は、ニューラルネットワーク(NN)において大きな成功を収めた。
サンプルの複雑な非線形特性のため、これらの活性化関数の目的は、元の特徴空間から線形分離可能な特徴空間へサンプルを投影することである。
この現象は、現在の典型的なNNにおいて、すべての特徴がすべての非線形関数によって変換される必要があるかどうかを探求することに興味をそそる。
論文 参考訳(メタデータ) (2022-03-22T13:09:17Z) - Phenomenology of Double Descent in Finite-Width Neural Networks [29.119232922018732]
二重降下(double descend)は、モデルが属する体制に依存して行動を記述する。
我々は影響関数を用いて、人口減少とその下限の適切な表現を導出する。
本分析に基づき,損失関数が二重降下に与える影響について検討した。
論文 参考訳(メタデータ) (2022-03-14T17:39:49Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
本研究では,非可換畳み込みニューラルネットワークの一般化について検討する。
非可換畳み込み構造は作用素空間上の変形に対して安定であることを示す。
論文 参考訳(メタデータ) (2021-08-23T04:22:58Z) - Non-asymptotic Excess Risk Bounds for Classification with Deep
Convolutional Neural Networks [6.051520664893158]
本稿では,一般の深層畳み込みニューラルネットワークを用いたバイナリ分類の問題を考える。
我々は、入力データ次元と他のモデルパラメータの観点から、リスク境界の要素を定義する。
CNNを用いた分類手法は次元の呪いを回避できることを示す。
論文 参考訳(メタデータ) (2021-05-01T15:55:04Z) - Going beyond p-convolutions to learn grayscale morphological operators [64.38361575778237]
p-畳み込み層と同じ原理に基づく2つの新しい形態層を提示する。
本研究では, p-畳み込み層と同じ原理に基づく2つの新しい形態層を示す。
論文 参考訳(メタデータ) (2021-02-19T17:22:16Z) - Probabilistic Numeric Convolutional Neural Networks [80.42120128330411]
画像や時系列などの連続的な入力信号は、不規則にサンプリングされたり、値が欠けていたりすることは、既存のディープラーニング手法では困難である。
ガウス過程(GP)として特徴を表す確率的畳み込みニューラルネットワークを提案する。
次に、畳み込み層を、このGP上で定義されたPDEの進化として定義し、次いで非線形性とする。
実験では,SuperPixel-MNISTデータセットの先行技術と医療時間2012データセットの競合性能から,提案手法の誤差を3倍に削減できることが示されている。
論文 参考訳(メタデータ) (2020-10-21T10:08:21Z) - How Implicit Regularization of ReLU Neural Networks Characterizes the
Learned Function -- Part I: the 1-D Case of Two Layers with Random First
Layer [5.969858080492586]
重みをランダムに選択し、終端層のみをトレーニングする1次元(浅)ReLUニューラルネットワークを考える。
そのようなネットワークにおいて、L2-正則化回帰は関数空間において、かなり一般の損失汎関数に対する推定の第2微分を正則化するために対応することを示す。
論文 参考訳(メタデータ) (2019-11-07T13:48:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。