論文の概要: A Decentralized Approach Towards Responsible AI in Social Ecosystems
- arxiv url: http://arxiv.org/abs/2102.06362v1
- Date: Fri, 12 Feb 2021 06:33:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-15 13:03:35.273209
- Title: A Decentralized Approach Towards Responsible AI in Social Ecosystems
- Title(参考訳): 社会的エコシステムにおける責任あるaiへの分散的アプローチ
- Authors: Wenjing Chu
- Abstract要約: 社会生態系の当事者が望ましいAI行動を生み出すための計算施設を提供する枠組みを提示する。
アーキテクチャレベルでAIシステムを分析し、AIシステムアーキテクチャのための2つの暗号メカニズムを提案する。
我々は、分散アプローチがコンピュータ科学と社会科学の両方の観点から、責任あるaiへの最も有望な道であると主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For AI technology to fulfill its full promises, we must design effective
mechanisms into the AI systems to support responsible AI behavior and curtail
potential irresponsible use, e.g. in areas of privacy protection, human
autonomy, robustness, and prevention of biases and discrimination in automated
decision making. In this paper, we present a framework that provides
computational facilities for parties in a social ecosystem to produce the
desired responsible AI behaviors. To achieve this goal, we analyze AI systems
at the architecture level and propose two decentralized cryptographic
mechanisms for an AI system architecture: (1) using Autonomous Identity to
empower human users, and (2) automating rules and adopting conventions within
social institutions. We then propose a decentralized approach and outline the
key concepts and mechanisms based on Decentralized Identifier (DID) and
Verifiable Credentials (VC) for a general-purpose computational infrastructure
to realize these mechanisms. We argue the case that a decentralized approach is
the most promising path towards Responsible AI from both the computer science
and social science perspectives.
- Abstract(参考訳): AI技術が完全な約束を果たすためには、責任あるAI行動をサポートし、無責任な使用を制限するために、効果的なメカニズムをAIシステムに設計する必要があります。
プライバシー保護、人間の自律性、堅牢性、および自動意思決定におけるバイアスと差別の防止の分野で。
本稿では,社会エコシステム内の関係者に対して,所望のAI行動を生成するための計算機能を提供するフレームワークを提案する。
この目的を達成するために,我々は,AIシステムをアーキテクチャレベルで分析し,(1)自律的アイデンティティを用いて人的ユーザを増強し,(2)規則を自動化し,社会機関内での慣行を採用する,という,AIシステムアーキテクチャのための2つの分散暗号機構を提案する。
次に、分散化手法を提案し、これらの機構を実現するために、分散化識別子(DID)と検証クレデンシャル(VC)に基づく重要な概念とメカニズムを概説する。
我々は、分散アプローチがコンピュータ科学と社会科学の両方の観点から、責任あるaiへの最も有望な道であると主張する。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Dual Governance: The intersection of centralized regulation and
crowdsourced safety mechanisms for Generative AI [1.2691047660244335]
Generative Artificial Intelligence(AI)は、特に消費者向け、オープンエンド、テキスト、画像生成モデルという形で、最近主流に採用されている。
創造的なAIが人間の創造性と生活を駆逐する可能性もまた、厳しい監視下にある。
政府によるAIを統制するための既存の規制と提案は、十分な明確さや統一性を持たないような批判に直面している。
クラウドソースによる安全ツールとメカニズムによる分散保護は、潜在的な代替手段である。
論文 参考訳(メタデータ) (2023-08-02T23:25:21Z) - Reflective Hybrid Intelligence for Meaningful Human Control in
Decision-Support Systems [4.1454448964078585]
本稿では,AIシステムに対する有意義な人間制御のための自己表現型AIシステムの概念を紹介する。
心理学と哲学の知識を形式的推論手法や機械学習アプローチと統合する枠組みを提案する。
我々は、自己反射型AIシステムは、自己反射型ハイブリッドシステム(人間+AI)に繋がると主張している。
論文 参考訳(メタデータ) (2023-07-12T13:32:24Z) - Putting AI Ethics into Practice: The Hourglass Model of Organizational
AI Governance [0.0]
AIシステムの開発と利用を目標とする,AIガバナンスフレームワークを提案する。
このフレームワークは、AIシステムをデプロイする組織が倫理的AI原則を実践に翻訳するのを助けるように設計されている。
論文 参考訳(メタデータ) (2022-06-01T08:55:27Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
予測モデルは不確実性を認識し、信頼できる予測をもたらすことが不可欠である。
このシンポジウムの焦点は、データ品質と技術的堅牢性と安全性を改善するAIシステムであった。
広く定義された領域からの提出はまた、説明可能なモデル、人間の信頼、AIの倫理的側面といった要求に対処するアプローチについても論じた。
論文 参考訳(メタデータ) (2020-01-15T15:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。