Quantum information dynamics in a high-dimensional parity-time-symmetric
system
- URL: http://arxiv.org/abs/2102.06721v1
- Date: Fri, 12 Feb 2021 19:00:44 GMT
- Title: Quantum information dynamics in a high-dimensional parity-time-symmetric
system
- Authors: Zhihao Bian, Lei Xiao, Kunkun Wang, Franck Assogba Onanga, Frantisek
Ruzicka, Wei Yi, Yogesh N. Joglekar, and Peng Xue
- Abstract summary: Non-Hermitian systems with parity-time ($mathcalPT$) symmetry give rise to exceptional points (EPs) with exceptional properties.
We simulate quantum dynamics of a four-dimensional $mathcalPT$-symmetric system across a fourth-order exceptional point.
- Score: 3.2363688674314814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Hermitian systems with parity-time ($\mathcal{PT}$) symmetry give rise to
exceptional points (EPs) with exceptional properties that arise due to the
coalescence of eigenvectors. Such systems have been extensively explored in the
classical domain, where second or higher order EPs have been proposed or
realized. In contrast, quantum information studies of $\mathcal{PT}$-symmetric
systems have been confined to systems with a two-dimensional Hilbert space.
Here by using a single-photon interferometry setup, we simulate quantum
dynamics of a four-dimensional $\mathcal{PT}$-symmetric system across a
fourth-order exceptional point. By tracking the coherent, non-unitary evolution
of the density matrix of the system in $\mathcal{PT}$-symmetry unbroken and
broken regions, we observe the entropy dynamics for both the entire system, and
the gain and loss subsystems. Our setup is scalable to the higher-dimensional
$\mathcal{PT}$-symmetric systems, and our results point towards the rich
dynamics and critical properties.
Related papers
- Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.
We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Holographic View of Mixed-State Symmetry-Protected Topological Phases in Open Quantum Systems [4.416740212467273]
We establish a holographic duality between d-dimensional mixed-state symmetry-protected topological phases (mSPTs) and (d+1)-dimensional subsystem symmetry-protected topological states (SSPTs)
Specifically, we show that the reduced density matrix of the boundary layer of a (d+1)-dimensional SSPT with subsystem symmetry $mathcalS$ corresponds to a d-dimensional mSPT with strong $mathcalS$ and weak $mathcalG$ symmetries.
arXiv Detail & Related papers (2024-10-10T17:59:42Z) - Solving the homogeneous Bethe-Salpeter equation with a quantum annealer [34.173566188833156]
The homogeneous Bethe-Salpeter equation (hBSE) was solved for the first time by using a D-Wave quantum annealer.
A broad numerical analysis of the proposed algorithms was carried out using both the proprietary simulated-anneaing package and the D-Wave Advantage 4.1 system.
arXiv Detail & Related papers (2024-06-26T18:12:53Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - $\mathcal{PT}$-symmetry breaking in a Kitaev chain with one pair of
gain-loss potentials [0.0]
Parity-time symmetric systems are governed by non-Hermitian Hamiltonians with exceptional-point (EP) degeneracies.
Here, we obtain the $mathcalPT$-threshold for a one-dimensional, finite Kitaev chain.
In particular, for an even chain with zero on-site potential, we find a re-entrant $mathcalPT$-symmetric phase bounded by second-order EP contours.
arXiv Detail & Related papers (2021-03-12T03:10:45Z) - Searching for exceptional points and inspecting non-contractivity of
trace distance in (anti-)$\mathcal{PT}\!-$symmetric systems [0.0]
Non-Hermitian systems with parity-time ($mathcalPT$) symmetry and anti-$mathcalPT$ symmetry give rise to exceptional points (EPs)
We propose a powerful and easily computable tool, based on the Hilbert-Schmidt speed (HSS), which does not require the diagonalization of the evolved density matrix.
We find that the trace distance, a measure of distinguishability of two arbitrary quantum states, may be non-contractive under the non-Hermitian evolution of the system.
arXiv Detail & Related papers (2021-01-12T18:42:52Z) - Stable States with Non-Zero Entropy under Broken $\mathcal{PT}$-Symmetry [1.3049516752695611]
We focus on the dynamical features of a triple-qubit system, one of which evolves under local $mathcalPT$-symmetric Hamiltonian.
A new kind of abnormal dynamic pattern in the entropy evolution process is identified, which presents a parameter-dependent stable state.
Our work reveals the distinctive dynamic features in the triple-qubit $mathcalPT$-symmetric system and paves the way for practical quantum simulation of multi-party non-Hermitian system on quantum computers.
arXiv Detail & Related papers (2021-01-01T05:56:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.