Stability of the bulk gap for frustration-free topologically ordered
quantum lattice systems
- URL: http://arxiv.org/abs/2102.07209v3
- Date: Thu, 9 Mar 2023 10:15:09 GMT
- Title: Stability of the bulk gap for frustration-free topologically ordered
quantum lattice systems
- Authors: Bruno Nachtergaele, Robert Sims, Amanda Young
- Abstract summary: We prove that uniformly small short-range perturbations do not close the bulk gap above the ground state of frustration-free quantum spin systems.
We do not require a positive lower bound for finite-system Hamiltonians uniform in the system size.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We prove that uniformly small short-range perturbations do not close the bulk
gap above the ground state of frustration-free quantum spin systems that
satisfy a standard local topological quantum order condition. In contrast with
earlier results, we do not require a positive lower bound for finite-system
Hamiltonians uniform in the system size. To obtain this result, we adapt the
Bravyi-Hastings-Michalakis strategy to the GNS representation of the
infinite-system ground state.
Related papers
- Frustration-free free fermions and beyond [0.0]
Frustration-free Hamiltonians provide pivotal models for understanding quantum many-body systems.
We establish a general framework for frustration-free fermionic systems.
arXiv Detail & Related papers (2025-03-17T07:18:15Z) - Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Dissipation induced Liouville-Majorana modes in open quantum system [0.0]
In open systems, topological edge states quickly lose coherence and cannot be used in topological quantum computation and quantum memory.
Here we show that for dissipative quantum spin (or fermionic) systems, topologically non-Hermitian Liouville-Majorana edge modes (LMEMs) can survive in the extended Liouville-Fock space.
arXiv Detail & Related papers (2023-05-15T02:38:57Z) - Nonadiabatic Geometric Quantum Computation in Non-Hermitian Systems [2.9848983009488936]
We show how to perform nonadiabatic geometric quantum computation (NGQC) in non-Hermitian quantum systems.
By utilizing a novel geometric phase generated by non-unitary evolution of the system, a universal set of geometric gates can be realized with a high fidelity.
arXiv Detail & Related papers (2023-04-13T01:24:54Z) - Composite Quantum Phases in Non-Hermitian Systems [18.53834485319812]
We present a precise definition of quantum phases for non-Hermitian systems.
We propose a new family of phases referred to as composite quantum phases.
Our work establishes a new framework for studying and constructing quantum phases in non-Hermitian interacting systems.
arXiv Detail & Related papers (2023-04-10T13:47:05Z) - Transition to chaos in extended systems and their quantum impurity
models [0.0]
Chaos sets a fundamental limit to quantum-information processing schemes.
We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices.
arXiv Detail & Related papers (2022-05-02T18:01:09Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Exceptional Non-Hermitian Phases in Disordered Quantum Wires [0.0]
We demonstrate the occurrence of nodal non-Hermitian (NH) phases featuring exceptional degeneracies in chiral-symmetric disordered quantum wires.
We find that at least two nodal points in the clean Hermitian system are required for exceptional points to be effectively stabilized upon adding disorder.
arXiv Detail & Related papers (2021-02-24T19:00:04Z) - Chaos-Assisted Long-Range Tunneling for Quantum Simulation [22.197954380539915]
We demonstrate that driving such lattice systems in an intermediate regime of modulation maps them onto tight-binding Hamiltonians with chaos-induced long-range hoppings.
Such systems can thus be used to enlarge the scope of quantum simulations to experimentally realize long-range models of condensed matter.
arXiv Detail & Related papers (2020-11-03T17:13:21Z) - Quasi-Locality Bounds for Quantum Lattice Systems. Part II.
Perturbations of Frustration-Free Spin Models with Gapped Ground States [0.0]
We study the stability with respect to a broad class of perturbations of gapped ground state phases of quantum spin systems.
Under a condition of Local Topological Quantum Order, the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential.
arXiv Detail & Related papers (2020-10-29T03:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.