Composite Quantum Phases in Non-Hermitian Systems
- URL: http://arxiv.org/abs/2304.04588v2
- Date: Wed, 13 Sep 2023 05:37:04 GMT
- Title: Composite Quantum Phases in Non-Hermitian Systems
- Authors: Yuchen Guo, Ruohan Shen, Shuo Yang
- Abstract summary: We present a precise definition of quantum phases for non-Hermitian systems.
We propose a new family of phases referred to as composite quantum phases.
Our work establishes a new framework for studying and constructing quantum phases in non-Hermitian interacting systems.
- Score: 18.53834485319812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Hermitian systems have attracted considerable interest in recent years
owing to their unique topological properties that are absent in Hermitian
systems. While such properties have been thoroughly characterized in free
fermion models, they remain an open question for interacting bosonic systems.
In this work, we present a precise definition of quantum phases for
non-Hermitian systems and propose a new family of phases referred to as
composite quantum phases. We demonstrate the existence of these phases in a
one-dimensional spin-$1$ system and show their robustness against perturbations
through numerical simulations. Furthermore, we investigate the phase diagram of
our model, indicating the extensive presence of these new phases in
non-Hermitian systems. Our work establishes a new framework for studying and
constructing quantum phases in non-Hermitian interacting systems, revealing
exciting possibilities beyond the single-particle picture.
Related papers
- Experimental demonstration of spontaneous symmetry breaking with emergent multi-qubit entanglement [10.791982177923412]
Spontaneous symmetry breaking ( SSB) is crucial to the occurrence of phase transitions.
We present an experimental demonstration of the SSB process in the Lipkin-Meshkov-Glick model.
The observed nonclassical correlations among these qubits in the symmetry-breaking region go beyond the conventional description of SSB.
arXiv Detail & Related papers (2024-07-17T13:50:29Z) - Non-Hermitian strongly interacting Dirac fermions: a quantum Monte-Carlo
study [2.580765958706854]
In this letter, we investigate the interplay between non-Hermitian physics and strong correlation in Dirac-fermion systems.
We decipher the ground-state phase diagram of the Honeycomb Hubbard model in the presence non-Hermitian asymmetric spin resolved hopping processes.
Our study reveals that critical properties of the quantum phase transition between Dirac semi-metal and AF ordered phases are consistent with the universality class in Hermitian system.
arXiv Detail & Related papers (2023-02-20T17:22:01Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Probing phase transitions in non-Hermitian systems with Multiple Quantum
Coherences [0.0]
We show the usefulness of multiple quantum coherences for probing equilibrium phase transitions in non-Hermitian systems.
Our results have applications to non-Hermitian quantum sensing, quantum thermodynamics, and in the study of the non-Hermitian skin effect.
arXiv Detail & Related papers (2021-09-06T14:30:47Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum Hall admittance in non-Hermitian systems [0.0]
We give the complex Berry curvature and Berry phase for the two-dimensional non-Hermitian Dirac model.
The imaginary part of the complex Berry phase induces the quantum Hall susceptance.
We analyze the complex energy band structures of the two-dimensional non-Hermitian Dirac model.
arXiv Detail & Related papers (2021-01-01T13:35:14Z) - Probing non-Hermitian phase transitions in curved space via quench
dynamics [0.0]
Non-Hermitian Hamiltonians are relevant to describe the features of a broad class of physical phenomena.
We study the interplay of geometry and non-Hermitian dynamics by unveiling the existence of curvature-dependent non-Hermitian phase transitions.
arXiv Detail & Related papers (2020-12-14T19:47:59Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.