Why Talking about ethics is not enough: a proposal for Fintech's AI
ethics
- URL: http://arxiv.org/abs/2102.07213v1
- Date: Sun, 14 Feb 2021 18:23:42 GMT
- Title: Why Talking about ethics is not enough: a proposal for Fintech's AI
ethics
- Authors: Cristina Godoy Bernardo de Oliveira and Evandro Eduardo Seron Ruiz
- Abstract summary: This research aims to analyze the benefits of the application of the theory and the idea of Social License.
The formation of a Social License will allow early-stage stakeholders to participate in the elaboration of an ethical code.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the potential applications of Artificial Intelligence (AI) in the
financial sector increases, ethical issues become gradually latent. The
distrust of individuals, social groups, and governments about the risks arising
from Fintech's activities is growing. Due to this scenario, the preparation of
recommendations and Ethics Guidelines is increasing and the risks of being
chosen the principles and ethical values most appropriate to companies are
high. Thus, this exploratory research aims to analyze the benefits of the
application of the stakeholder theory and the idea of Social License to build
an environment of trust and for the realization of ethical principles by
Fintech. The formation of a Fintech association for the creation of a Social
License will allow early-stage Fintech to participate from the beginning of its
activities in the elaboration of a dynamic ethical code and with the
participation of stakeholders.
Related papers
- The Only Way is Ethics: A Guide to Ethical Research with Large Language Models [53.316174782223115]
'LLM Ethics Whitepaper' is an open resource for NLP practitioners and those tasked with evaluating the ethical implications of others' work.
Our goal is to translate ethics literature into concrete recommendations and provocations for thinking with clear first steps.
'LLM Ethics Whitepaper' distils a thorough literature review into clear Do's and Don'ts, which we present also in this paper.
arXiv Detail & Related papers (2024-12-20T16:14:43Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.
I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - From Principles to Practice: A Deep Dive into AI Ethics and Regulations [13.753819576072127]
The article thoroughly analyzes the ground-breaking AI regulatory framework proposed by the European Union.
Considering the technical efforts and strategies undertaken by academics and industry to uphold these principles, we explore the synergies and conflicts among the five ethical principles.
arXiv Detail & Related papers (2024-12-06T00:46:20Z) - Ethics Whitepaper: Whitepaper on Ethical Research into Large Language Models [53.316174782223115]
This whitepaper offers an overview of the ethical considerations surrounding research into or with large language models (LLMs)
As LLMs become more integrated into widely used applications, their societal impact increases, bringing important ethical questions to the forefront.
arXiv Detail & Related papers (2024-10-17T18:36:02Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
Ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact.
This work unifies the current and future ethical concerns of deploying AI into society.
arXiv Detail & Related papers (2023-11-28T21:00:56Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
The paper highlights the impact AI has in every sector of the US economy and the resultant effect on entities spanning businesses, government, academia, and civil society.
Our discussion explores eleven fundamental 'ethical principles' structured as overarching themes.
These encompass Transparency, Justice, Fairness, Equity, Non- Maleficence, Responsibility, Accountability, Privacy, Beneficence, Freedom, Autonomy, Trust, Dignity, Sustainability, and Solidarity.
arXiv Detail & Related papers (2023-10-09T14:29:00Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Ethics of AI: A Systematic Literature Review of Principles and
Challenges [3.7129018407842445]
Transparency, privacy, accountability and fairness are identified as the most common AI ethics principles.
Lack of ethical knowledge and vague principles are reported as the significant challenges for considering ethics in AI.
arXiv Detail & Related papers (2021-09-12T15:33:43Z) - Institutionalising Ethics in AI through Broader Impact Requirements [8.793651996676095]
We reflect on a novel governance initiative by one of the world's largest AI conferences.
NeurIPS introduced a requirement for submitting authors to include a statement on the broader societal impacts of their research.
We investigate the risks, challenges and potential benefits of such an initiative.
arXiv Detail & Related papers (2021-05-30T12:36:43Z) - Ethics-Based Auditing to Develop Trustworthy AI [0.0]
We argue that ethics-based auditing can improve the quality of decision making, increase user satisfaction, unlock growth potential, enable law-making, and relieve human suffering.
To be feasible and effective, ethics-based auditing should take the form of a continuous and constructive process, approach ethical alignment from a system perspective, and be aligned with public policies and incentives for ethically desirable behaviour.
arXiv Detail & Related papers (2021-04-30T11:39:40Z) - Case Study: Deontological Ethics in NLP [119.53038547411062]
We study one ethical theory, namely deontological ethics, from the perspective of NLP.
In particular, we focus on the generalization principle and the respect for autonomy through informed consent.
We provide four case studies to demonstrate how these principles can be used with NLP systems.
arXiv Detail & Related papers (2020-10-09T16:04:51Z) - Hacia los Comit\'es de \'Etica en Inteligencia Artificial [68.8204255655161]
It is priority to create the rules and specialized organizations that can oversight the following of such rules.
This work proposes the creation, at the universities, of Ethical Committees or Commissions specialized on Artificial Intelligence.
arXiv Detail & Related papers (2020-02-11T23:48:31Z) - On the Morality of Artificial Intelligence [154.69452301122175]
We propose conceptual and practical principles and guidelines for Machine Learning research and deployment.
We insist on concrete actions that can be taken by practitioners to pursue a more ethical and moral practice of ML aimed at using AI for social good.
arXiv Detail & Related papers (2019-12-26T23:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.