論文の概要: Don't Treat the Symptom, Find the Cause! Efficient
Artificial-Intelligence Methods for (Interactive) Debugging
- arxiv url: http://arxiv.org/abs/2306.12850v1
- Date: Thu, 22 Jun 2023 12:44:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 14:37:24.310753
- Title: Don't Treat the Symptom, Find the Cause! Efficient
Artificial-Intelligence Methods for (Interactive) Debugging
- Title(参考訳): 症状を治さないで、原因を見つけなさい!
インタラクティブデバッギングのための効率的な人工知能法
- Authors: Patrick Rodler
- Abstract要約: 現代の世界では、私たちは、より高度な洗練のシステムに常用し、活用し、交流し、頼りにしています。
本論では、モデルに基づく診断の話題を紹介し、この分野の課題を指摘し、これらの課題に対処する研究からのアプローチの選択について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the modern world, we are permanently using, leveraging, interacting with,
and relying upon systems of ever higher sophistication, ranging from our cars,
recommender systems in e-commerce, and networks when we go online, to
integrated circuits when using our PCs and smartphones, the power grid to
ensure our energy supply, security-critical software when accessing our bank
accounts, and spreadsheets for financial planning and decision making. The
complexity of these systems coupled with our high dependency on them implies
both a non-negligible likelihood of system failures, and a high potential that
such failures have significant negative effects on our everyday life. For that
reason, it is a vital requirement to keep the harm of emerging failures to a
minimum, which means minimizing the system downtime as well as the cost of
system repair. This is where model-based diagnosis comes into play.
Model-based diagnosis is a principled, domain-independent approach that can
be generally applied to troubleshoot systems of a wide variety of types,
including all the ones mentioned above, and many more. It exploits and
orchestrates i.a. techniques for knowledge representation, automated reasoning,
heuristic problem solving, intelligent search, optimization, stochastics,
statistics, decision making under uncertainty, machine learning, as well as
calculus, combinatorics and set theory to detect, localize, and fix faults in
abnormally behaving systems.
In this thesis, we will give an introduction to the topic of model-based
diagnosis, point out the major challenges in the field, and discuss a selection
of approaches from our research addressing these issues.
- Abstract(参考訳): 現代の世界では、自動車、eコマースのレコメンデーションシステム、オンラインのネットワーク、PCやスマートフォンを使うときの集積回路、エネルギー供給の確保のための電力網、銀行口座にアクセスするときのセキュリティクリティカルなソフトウェア、金融計画と意思決定のためのスプレッドシートなど、より高度な高度なシステムに常用し、活用し、交流し、頼りにしています。
これらのシステムの複雑さとシステムへの高い依存は、システム障害の非無視可能性と、そのような障害が私たちの日常生活に重大な悪影響を及ぼす可能性の両方を示している。
そのため,システム停止時間を最小限に抑えるとともに,システム修復のコストを最小化するために,新たな障害の被害を最小限に抑えることが不可欠である。
ここでモデルベースの診断が活躍する。
モデルに基づく診断は、原則化された、ドメインに依存しないアプローチであり、上記のものを含む様々な種類のトラブルシュートシステムに一般的に適用することができる。
知識表現、自動推論、ヒューリスティック問題解決、インテリジェントサーチ、最適化、確率論、統計学、不確実性下での意思決定、機械学習、および微積分学、組合せ論、集合論の技法を活用し、異常行動システムにおける障害の検出、局所化、修正を行う。
本論文では,モデルベース診断のトピックを紹介するとともに,この分野の主要な課題を指摘し,これらの課題に対する我々の研究から選択したアプローチについて論じる。
関連論文リスト
- Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - ALT: An Automatic System for Long Tail Scenario Modeling [15.76033166478158]
この問題に対処するために,ALTという自動システムを提案する。
各種自動機械学習関連技術を活用するなど,我々のシステムで使用されるアルゴリズムを改善するために,いくつかの取り組みがなされている。
システムを構築するには、システムの観点から多くの最適化が行われ、本質的なモジュールは武装している。
論文 参考訳(メタデータ) (2023-05-19T02:35:39Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Machine learning-based approach for online fault Diagnosis of Discrete
Event System [0.0]
問題は、センサーとアクチュエータが個別のバイナリ信号を提供する自動生産システムのオンライン診断である。
本稿では,診断システムの機械学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-10-24T08:56:13Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
本稿では,認識システムにおける実行時モニタリングと故障検出と識別のための数学的モデルを提案する。
本稿では,LGSVL自動運転シミュレータとApollo Auto自動運転ソフトウェアスタックを用いた実写シミュレーションにおいて,PerSySと呼ばれるモニタリングシステムを実演する。
論文 参考訳(メタデータ) (2020-11-11T23:03:14Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
知覚は、ロボット工学や自動運転車などの自律システムの高統合的応用において重要な要素である。
知覚システムの重要さにもかかわらず、システムレベルのモニタリングには正式なアプローチは存在しない。
本稿では,認識システムの実行時モニタリングと故障検出のための数学的モデルを提案する。
論文 参考訳(メタデータ) (2020-05-24T18:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。