論文の概要: Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach
- arxiv url: http://arxiv.org/abs/2102.07514v1
- Date: Mon, 15 Feb 2021 12:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-16 15:13:02.212905
- Title: Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach
- Title(参考訳): カオス流れの短期・長期予測:物理制約型貯水池計算手法
- Authors: Nguyen Anh Khoa Doan, Wolfgang Polifke and Luca Magri
- Abstract要約: 乱流せん断流モデルにおける極端な事象や長期速度統計を時間精度で予測する,貯留層計算に基づく物理制約型機械学習手法を提案する。
両手法の組み合わせは, 乱流の自己持続過程モデルにおいて, 速度統計を正確に再現し, 極端な事象の発生と振幅を予測することができることを示す。
- 参考スコア(独自算出の注目度): 5.37133760455631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a physics-constrained machine learning method-based on reservoir
computing- to time-accurately predict extreme events and long-term velocity
statistics in a model of turbulent shear flow. The method leverages the
strengths of two different approaches: empirical modelling based on reservoir
computing, which it learns the chaotic dynamics from data only, and physical
modelling based on conservation laws, which extrapolates the dynamics when
training data becomes unavailable. We show that the combination of the two
approaches is able to accurately reproduce the velocity statistics and to
predict the occurrence and amplitude of extreme events in a model of
self-sustaining process in turbulence. In this flow, the extreme events are
abrupt transitions from turbulent to quasi-laminar states, which are
deterministic phenomena that cannot be traditionally predicted because of
chaos. Furthermore, the physics-constrained machine learning method is shown to
be robust with respect to noise. This work opens up new possibilities for
synergistically enhancing data-driven methods with physical knowledge for the
time-accurate prediction of chaotic flows.
- Abstract(参考訳): 乱流せん断流モデルにおける極端な事象や長期速度統計を時間精度で予測する,貯留層計算に基づく物理制約型機械学習手法を提案する。
この手法は,データのみからカオス力学を学習する貯水池計算に基づく経験的モデリングと,トレーニングデータが利用できない場合に動的を外挿する保存法に基づく物理モデリングという,2つの異なるアプローチの強みを利用する。
両手法の組み合わせは, 乱流の自己持続過程モデルにおいて, 速度統計を正確に再現し, 極端な事象の発生と振幅を予測することができることを示す。
この流れでは、極端な事象は乱流から準ラミナー状態への突然の遷移であり、カオスのため伝統的に予測できない決定論的現象である。
さらに, 物理制約付き機械学習手法は, 雑音に対して頑健であることを示す。
この研究は、カオスの流れの正確な予測のための物理的知識とデータ駆動手法を相乗的に強化する新しい可能性を開く。
関連論文リスト
- A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data [12.566163525039558]
本稿では,カオスシステムの非侵襲的に解けない長期シミュレーションにニューラルネットワークモデルをトレーニングするための戦略を提案する。
トレーニングで見られるデータより30倍以上長い時間的地平線上での異方性統計を正確に予測する能力を示す。
論文 参考訳(メタデータ) (2024-08-02T18:34:30Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Benchmarking Autoregressive Conditional Diffusion Models for Turbulent
Flow Simulation [29.806100463356906]
条件付き拡散モデルに基づく自動回帰ロールアウトを利用した完全データ駆動型流体解法が有効な選択肢であるかどうかを解析する。
本研究は, トレーニング体制を超えた流れパラメータの一般化を必要としながら, 精度, 後方サンプリング, スペクトル挙動, 時間安定性について検討する。
単純な拡散に基づくアプローチであっても、トレーニング時のアンロールのような最先端の安定化技術と同等でありながら、精度と時間的安定性の観点から、複数の確立したフロー予測手法より優れていることが判明した。
論文 参考訳(メタデータ) (2023-09-04T18:01:42Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Physics-aware, probabilistic model order reduction with guaranteed
stability [0.0]
実効, 低次元, 粗粒度ダイナミクスモデル学習のための生成的枠組みを提案する。
粒子力学のマルチスケール物理系におけるその有効性と精度を実証する。
論文 参考訳(メタデータ) (2021-01-14T19:16:51Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。