Nonintrusive Uncertainty Quantification for automotive crash problems
with VPS/Pamcrash
- URL: http://arxiv.org/abs/2102.07673v1
- Date: Mon, 15 Feb 2021 16:59:39 GMT
- Title: Nonintrusive Uncertainty Quantification for automotive crash problems
with VPS/Pamcrash
- Authors: Marc Rocas, Alberto Garc\'ia-Gonz\'alez, Sergio Zlotnik, Xabier
Larr\'ayoz and Pedro D\'iez
- Abstract summary: surrogate models (metamodels) allow drastically reducing the computational cost of Monte Carlo process.
kernel Principal Component Analysis (kPCA) is found to be effective to simplify the model outcome description.
A benchmark crash test is used to show the efficiency of combining metamodels with kPCA.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty Quantification (UQ) is a key discipline for computational
modeling of complex systems, enhancing reliability of engineering simulations.
In crashworthiness, having an accurate assessment of the behavior of the model
uncertainty allows reducing the number of prototypes and associated costs.
Carrying out UQ in this framework is especially challenging because it requires
highly expensive simulations. In this context, surrogate models (metamodels)
allow drastically reducing the computational cost of Monte Carlo process.
Different techniques to describe the metamodel are considered, Ordinary
Kriging, Polynomial Response Surfaces and a novel strategy (based on Proper
Generalized Decomposition) denoted by Separated Response Surface (SRS). A large
number of uncertain input parameters may jeopardize the efficiency of the
metamodels. Thus, previous to define a metamodel, kernel Principal Component
Analysis (kPCA) is found to be effective to simplify the model outcome
description. A benchmark crash test is used to show the efficiency of combining
metamodels with kPCA.
Related papers
- Decomposing and Editing Predictions by Modeling Model Computation [75.37535202884463]
We introduce a task called component modeling.
The goal of component modeling is to decompose an ML model's prediction in terms of its components.
We present COAR, a scalable algorithm for estimating component attributions.
arXiv Detail & Related papers (2024-04-17T16:28:08Z) - Correct-by-Construction Control for Stochastic and Uncertain Dynamical
Models via Formal Abstractions [44.99833362998488]
We develop an abstraction framework that can be used to solve this problem under various modeling assumptions.
We use state-of-the-art verification techniques to compute an optimal policy on the iMDP with guarantees for satisfying the given specification.
We then show that, by construction, we can refine this policy into a feedback controller for which these guarantees carry over to the dynamical model.
arXiv Detail & Related papers (2023-11-16T11:03:54Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
We propose predictable MDP abstraction (PMA)
Instead of training a predictive model on the original MDP, we train a model on a transformed MDP with a learned action space.
We theoretically analyze PMA and empirically demonstrate that PMA leads to significant improvements over prior unsupervised model-based RL approaches.
arXiv Detail & Related papers (2023-02-08T07:37:51Z) - General multi-fidelity surrogate models: Framework and active learning
strategies for efficient rare event simulation [1.708673732699217]
Estimating the probability of failure for complex real-world systems is often prohibitively expensive.
This paper presents a robust multi-fidelity surrogate modeling strategy.
It is shown to be highly accurate while drastically reducing the number of high-fidelity model calls.
arXiv Detail & Related papers (2022-12-07T00:03:21Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Sample Complexity of Robust Reinforcement Learning with a Generative
Model [0.0]
We propose a model-based reinforcement learning (RL) algorithm for learning an $epsilon$-optimal robust policy.
We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence.
In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies.
arXiv Detail & Related papers (2021-12-02T18:55:51Z) - Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set [3.862247454265944]
We develop a framework to develop calibration schemes that satisfy rigorous frequentist statistical guarantees.
We demonstrate our methodology on several numerical examples, including an application to calibration of a limit order book market simulator.
arXiv Detail & Related papers (2021-05-27T00:59:29Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
We propose to leverage the power of modern simulators and recent techniques in Bayesian statistics for likelihood-free inference.
The posterior distribution over simulation parameters is propagated through a potentially non-analytical model of the system.
Experiments show that the controller proposed attained superior performance and robustness on classical control and robotics tasks.
arXiv Detail & Related papers (2020-02-18T05:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.