論文の概要: Topological Deep Learning: Classification Neural Networks
- arxiv url: http://arxiv.org/abs/2102.08354v1
- Date: Tue, 16 Feb 2021 18:41:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 15:10:37.665165
- Title: Topological Deep Learning: Classification Neural Networks
- Title(参考訳): トポロジカルディープラーニング - ニューラルネットワークの分類
- Authors: Mustafa Hajij, Kyle Istvan
- Abstract要約: トポロジカルディープラーニング(topological deep learning)は、トポロジカル言語をディープラーニングに導入することを目的とした形式主義である。
ニューラルネットワークの文脈において,分類問題は可能か不可能かを示す。
- 参考スコア(独自算出の注目度): 0.913755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological deep learning is a formalism that is aimed at introducing
topological language to deep learning for the purpose of utilizing the minimal
mathematical structures to formalize problems that arise in a generic deep
learning problem. This is the first of a sequence of articles with the purpose
of introducing and studying this formalism. In this article, we define and
study the classification problem in machine learning in a topological setting.
Using this topological framework, we show when the classification problem is
possible or not possible in the context of neural networks. Finally, we
demonstrate how our topological setting immediately illuminates aspects of this
problem that are not as readily apparent using traditional tools.
- Abstract(参考訳): 位相的深層学習(英: topological deep learning)は、一般的な深層学習問題で生じる問題を形式化するために最小の数学的構造を利用する目的で、深層学習にトポロジカル言語を導入することを目的とした形式主義である。
これは、この形式の導入と研究を目的とした一連の記事の最初である。
本稿では,機械学習における分類問題をトポロジカルな設定で定義・検討する。
このトポロジカルな枠組みを用いて,ニューラルネットワークの文脈で分類問題が可能か不可能かを示す。
最後に,我々のトポロジカルな設定が,従来のツールでは容易には見当たらない問題の側面を直ちに照らしていることを示す。
関連論文リスト
- Structure of Artificial Neural Networks -- Empirical Investigations [0.0]
10年以内にDeep Learningは、人工知能の数え切れないほどの問題を、支配的な解法で克服した。
ニューラルネットワークの構造を形式的に定義することで、ニューラルネットワークの探索問題と解法を共通の枠組みで定式化することができる。
構造は違いをもたらすのか、それとも任意に選択できるのか?
論文 参考訳(メタデータ) (2024-10-12T16:13:28Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Learning Topological Representations for Deep Image Understanding [8.698159165261542]
深層学習フレームワークにおけるトポロジカル構造の新しい表現法を提案する。
我々は、トポロジカルデータ解析の数学的ツールを活用し、より良いセグメンテーションと不確実性推定のための原理的手法を開発した。
論文 参考訳(メタデータ) (2024-03-22T17:23:37Z) - Topological Expressivity of ReLU Neural Networks [0.0]
本稿では,2値分類問題の設定におけるReLUニューラルネットワークの表現性について,トポロジ的観点から検討する。
その結果、深部ReLUニューラルネットワークは、トポロジカル単純化の観点から、浅部よりも指数関数的に強力であることがわかった。
論文 参考訳(メタデータ) (2023-10-17T10:28:00Z) - Topologically Regularized Data Embeddings [15.001598256750619]
低次元埋め込みにトポロジ的事前知識を組み込むための代数的トポロジに基づく汎用的アプローチを導入する。
正規化器としてそのような位相損失関数を用いて埋め込み損失を共同最適化すると、局所的な近似だけでなく所望の位相構造も反映する埋め込みが得られることを示す。
線形および非線形次元削減法とグラフ埋め込み法を組み合わせた計算効率,堅牢性,汎用性に関する提案手法を実験的に評価した。
論文 参考訳(メタデータ) (2023-01-09T13:49:47Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
ニューラルネットワークのランクは、層をまたがる情報を測定する。
これは機械学習の幅広い領域にまたがる重要な構造条件の例である。
しかし、ニューラルネットワークでは、低ランク構造を生み出す固有のメカニズムはあいまいで不明瞭である。
論文 参考訳(メタデータ) (2022-06-13T12:03:32Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [50.22269760171131]
過去10年間、データサイエンスと機械学習の実験的な革命が、ディープラーニングの手法によって生まれた。
このテキストは、統一幾何学的原理によって事前に定義された規則性を公開することに関するものである。
CNN、RNN、GNN、Transformersなど、最も成功したニューラルネットワークアーキテクチャを研究するための一般的な数学的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-04-27T21:09:51Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - A Topological Framework for Deep Learning [0.7310043452300736]
機械学習における分類問題は、非常に穏やかな条件下では常に解決可能であることを示す。
特に,ソフトマックス分類ネットワークは,有限列の位相移動によって入力位相空間に作用し,その分類処理を実現する。
論文 参考訳(メタデータ) (2020-08-31T15:56:42Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。