Intuitively Assessing ML Model Reliability through Example-Based
Explanations and Editing Model Inputs
- URL: http://arxiv.org/abs/2102.08540v1
- Date: Wed, 17 Feb 2021 02:41:32 GMT
- Title: Intuitively Assessing ML Model Reliability through Example-Based
Explanations and Editing Model Inputs
- Authors: Harini Suresh, Kathleen M. Lewis, John V. Guttag, Arvind Satyanarayan
- Abstract summary: Interpretability methods aim to help users build trust in and understand the capabilities of machine learning models.
We present two interface modules to facilitate a more intuitive assessment of model reliability.
- Score: 19.09848738521126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretability methods aim to help users build trust in and understand the
capabilities of machine learning models. However, existing approaches often
rely on abstract, complex visualizations that poorly map to the task at hand or
require non-trivial ML expertise to interpret. Here, we present two interface
modules to facilitate a more intuitive assessment of model reliability. To help
users better characterize and reason about a model's uncertainty, we visualize
raw and aggregate information about a given input's nearest neighbors in the
training dataset. Using an interactive editor, users can manipulate this input
in semantically-meaningful ways, determine the effect on the output, and
compare against their prior expectations. We evaluate our interface using an
electrocardiogram beat classification case study. Compared to a baseline
feature importance interface, we find that 9 physicians are better able to
align the model's uncertainty with clinically relevant factors and build
intuition about its capabilities and limitations.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Shared Interest: Large-Scale Visual Analysis of Model Behavior by
Measuring Human-AI Alignment [15.993648423884466]
Saliency is a technique to identify the importance of input features on a model's output.
We present Shared Interest: a set of metrics for comparing saliency with human annotated ground truths.
We show how Shared Interest can be used to rapidly develop or lose trust in a model's reliability.
arXiv Detail & Related papers (2021-07-20T02:44:39Z) - Model Learning with Personalized Interpretability Estimation (ML-PIE) [2.862606936691229]
High-stakes applications require AI-generated models to be interpretable.
Current algorithms for the synthesis of potentially interpretable models rely on objectives or regularization terms.
We propose an approach for the synthesis of models that are tailored to the user.
arXiv Detail & Related papers (2021-04-13T09:47:48Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
We propose a Model-agnostic Effective Efficient Direct (MEED) IFS framework for model interpretation.
Our framework mitigates concerns about sanity, shortcuts, model identifiability, and information transmission.
Our AIL mechanism can help learn the desired conditional distribution between selected features and targets.
arXiv Detail & Related papers (2020-06-09T16:27:17Z) - ViCE: Visual Counterfactual Explanations for Machine Learning Models [13.94542147252982]
We present an interactive visual analytics tool, ViCE, that generates counterfactual explanations to contextualize and evaluate model decisions.
Results are effectively displayed in a visual interface where counterfactual explanations are highlighted and interactive methods are provided for users to explore the data and model.
arXiv Detail & Related papers (2020-03-05T04:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.