論文の概要: Geostatistical Learning: Challenges and Opportunities
- arxiv url: http://arxiv.org/abs/2102.08791v1
- Date: Wed, 17 Feb 2021 14:33:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 14:47:22.034424
- Title: Geostatistical Learning: Challenges and Opportunities
- Title(参考訳): 地理統計的学習 : 挑戦と機会
- Authors: J\'ulio Hoffimann, Maciel Zortea, Breno de Carvalho, Bianca Zadrozny
- Abstract要約: 本稿では,地理統計学的(移動)学習問題を紹介し,地理空間データからの学習の課題を説明する。
合成ガウス過程データとニュージーランドの地球物理調査の実データを用いた実験は、いずれの手法も地理空間的文脈におけるモデル選択に適していないことを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Statistical learning theory provides the foundation to applied machine
learning, and its various successful applications in computer vision, natural
language processing and other scientific domains. The theory, however, does not
take into account the unique challenges of performing statistical learning in
geospatial settings. For instance, it is well known that model errors cannot be
assumed to be independent and identically distributed in geospatial (a.k.a.
regionalized) variables due to spatial correlation; and trends caused by
geophysical processes lead to covariate shifts between the domain where the
model was trained and the domain where it will be applied, which in turn harm
the use of classical learning methodologies that rely on random samples of the
data. In this work, we introduce the geostatistical (transfer) learning
problem, and illustrate the challenges of learning from geospatial data by
assessing widely-used methods for estimating generalization error of learning
models, under covariate shift and spatial correlation. Experiments with
synthetic Gaussian process data as well as with real data from geophysical
surveys in New Zealand indicate that none of the methods are adequate for model
selection in a geospatial context. We provide general guidelines regarding the
choice of these methods in practice while new methods are being actively
researched.
- Abstract(参考訳): 統計的学習理論は機械学習の応用の基礎となり、コンピュータビジョン、自然言語処理、その他の科学分野における様々な応用が成功した。
しかし、この理論は、地理空間設定における統計的学習のユニークな課題を考慮に入れていない。
例えば、モデル誤差は独立であり、地理空間(a.a.)で同一に分布しているとは仮定できないことはよく知られている。
地域化) 空間的相関による変数、そして、地球物理学的プロセスによって引き起こされるトレンドは、モデルが訓練された領域と適用される領域の間の共変量シフトにつながり、結果としてデータのランダムなサンプルに依存する古典的学習方法論の使用を損なう。
本研究では,共変量シフトと空間相関の下で,学習モデルの一般化誤差を推定するための広く使われている手法を評価し,地理空間データから学習する課題を説明する。
合成ガウス過程データとニュージーランドの地球物理調査の実データを用いた実験は、いずれの手法も地理空間的文脈におけるモデル選択に適していないことを示している。
我々は,新しい手法が積極的に研究されている間,これらの手法の実践的選択に関する一般的なガイドラインを提供する。
関連論文リスト
- You are out of context! [0.0]
新しいデータは、モデルによって学習された幾何学的関係を伸ばしたり、圧縮したり、ねじったりする力として振る舞うことができる。
本稿では,ベクトル空間表現における「変形」の概念に基づく機械学習モデルのための新しいドリフト検出手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T10:17:43Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
論文 参考訳(メタデータ) (2024-10-09T15:57:50Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - An Ensemble Framework for Explainable Geospatial Machine Learning Models [16.010404125829876]
本稿では,局所空間重み付け手法,説明可能な人工知能(XAI),最先端機械学習技術を融合した統合フレームワークを提案する。
この枠組みは、地理的回帰と分類の両方において、予測の解釈可能性と精度を高めるために検証される。
これは予測精度を大幅に向上させ、空間現象を理解するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2024-03-05T21:12:10Z) - Neural networks for geospatial data [0.0]
NN-GLSは、GPモデルの非線形平均に対する新しいニューラルネットワーク推定アルゴリズムである。
NN-GLSはグラフニューラルネットワーク(GNN)の特殊型として表現されていることを示す。
理論的には、NN-GLSは不規則に観測された空間相関データプロセスに一貫性があることが示されている。
論文 参考訳(メタデータ) (2023-04-18T17:52:23Z) - Evaluation Challenges for Geospatial ML [5.576083740549639]
地理空間機械学習モデルと地図は、科学と政策の下流分析にますます使われている。
空間機械学習出力の正確な測定方法は議論の的となっている。
本稿では,グローバルあるいはリモートセンシングされたデータセットを用いた地理空間機械学習におけるモデル評価のユニークな課題について述べる。
論文 参考訳(メタデータ) (2023-03-31T14:24:06Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
フェデレートラーニング(Federated Learning)とは、ローカルに計算されたパラメータの更新を、空間的に分散されたクライアントサイロからトレーニングデータに集約することで、共有サーバモデルによる学習を可能にする分散機械学習アプローチである。
本研究では, 勾配の共分散とヘッセンの幾何学的平均を利用して, シロ間およびシロ内成分の両方を捕捉するフェデレート不変学習一貫性(FedILC)アプローチを提案する。
これは医療、コンピュータビジョン、IoT(Internet of Things)といった様々な分野に関係している。
論文 参考訳(メタデータ) (2022-05-19T03:32:03Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - An Information-theoretic Approach to Distribution Shifts [9.475039534437332]
機械学習モデルを現実世界に安全にデプロイすることは、しばしば難しいプロセスである。
特定の地理的位置から得られたデータで訓練されたモデルは、他の場所で得られたデータでクエリされたときに失敗する傾向がある。
集団のサブセットに適合するニューラルネットワークは 選択バイアスを 与えるかもしれない
論文 参考訳(メタデータ) (2021-06-07T16:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。