Formalization of Bohr's contextuality within theory of open quantum
systems
- URL: http://arxiv.org/abs/2102.09184v1
- Date: Thu, 18 Feb 2021 06:59:56 GMT
- Title: Formalization of Bohr's contextuality within theory of open quantum
systems
- Authors: Andrei Khrennikov
- Abstract summary: Bohr was the first who pointed to contextuality of quantum measurements.
The original Bohr's contextuality, as contextuality of each quantum measurement, was practically forgotten.
This note is applied to formalization of Bohr's contextuality within the the scheme of indirect measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum physics, the notion of contextuality has a variety of
interpretations which are typically associated with the names of their
inventors, say Bohr, Bell, Kochen and Specker, and recently Dzhafarov. In fact,
Bohr was the first who pointed to contextuality of quantum measurements as a
part of formulation of his principle of complementarity. (Instead of
"contextuality", he considered dependence on "experimental conditions.")
Unfortunately, the contextuality counterpart of the complementarity principle
was overshadowed by the issue of incompatibility of observables. And the
interest for contextuality of quantum measurements rose again only in
connection with the Bell inequality. The original Bohr's contextuality, as
contextuality of each quantum measurement, was practically forgotten. It was
highlighted in the works of the author of this paper, with applications both to
physics and cognition. In this note, the theory of open quantum systems is
applied to formalization of Bohr's contextuality within the the scheme of
indirect measurements. This scheme is widely used in quantum information theory
and it leads to the theory of quantum instruments (Davis-Lewis-Ozawa). In this
scheme, Bohr's viewpoint on contextuality of quantum measurements is
represented in the formal mathematical framework.
Related papers
- A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - The Measurement Problem Is a Feature, Not a Bug--Schematising the
Observer and the Concept of an Open System on an Informational, or
(Neo-)Bohrian, Approach [0.0]
I argue that quantum mechanics represents what Bohr called a natural generalisation of the ordinary causal description''
I show how the quantum generalisation of the concept of an open system may be used to assuage Einstein's complaint.
arXiv Detail & Related papers (2023-08-31T00:19:04Z) - Quantum Relativity [0.0]
A new quantum postulate is suggested to restore classical locality and causality to quantum physics.
This postulate supports the EPR view that quantum mechanics is incomplete, while also staying compatible to the Bohr view that nothing exists beyond the quantum.
arXiv Detail & Related papers (2023-02-04T02:05:25Z) - Experimental test of high-dimensional quantum contextuality based on
contextuality concentration [14.374078593775309]
We show a family of noncontextuality inequalities whose maximum quantum violation grows with the dimension of the system.
Our results advance the investigation of high-dimensional contextuality, its connection to the Clifford algebra, and its role in quantum computation.
arXiv Detail & Related papers (2022-09-06T20:20:43Z) - On a foundational conceptual principle of quantum mechanics [0.0]
Anton Zeilinger's "foundational conceptual principle" for quantum mechanics is an idealistic principle, which should be replaced by a realistic principle of contextuality.
We argue that the assumption of non-locality is not required to explain quantum correlation.
In contrast to Zeilinger's proposed principle of quantization of information, the principle of contextuality explains it realistically.
arXiv Detail & Related papers (2022-03-26T11:24:14Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Bohr meets Rovelli: a dispositionalist account of the quantum limits of
knowledge [0.0]
I argue that the no-go theorems reflect on a formal level those practical and experimental settings that are needed to come to know the properties of physical systems.
I show that, as a consequence of a relationist and perspectival approach to quantum mechanics, the quantum state of the universe regarded as an isolated system cannot be known in principle.
arXiv Detail & Related papers (2020-01-13T22:45:09Z) - The (Quantum) Measurement Problem in Classical Mechanics [0.0]
We show why this is not an "obvious" nor "self evident" problem for the theory of quanta.
We discuss a representational realist account of both physical 'theories' and'measurement'
We show how through these same set of presuppositions it is easy to derive a completely analogous paradox for the case of classical mechanics.
arXiv Detail & Related papers (2020-01-01T17:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.