論文の概要: Convex regularization in statistical inverse learning problems
- arxiv url: http://arxiv.org/abs/2102.09526v2
- Date: Fri, 19 Feb 2021 07:29:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-22 13:42:04.930620
- Title: Convex regularization in statistical inverse learning problems
- Title(参考訳): 統計的逆学習問題における凸正規化
- Authors: Tatiana A. Bubba and Martin Burger and Tapio Helin and Luca Ratti
- Abstract要約: 一般凸と$p$-均一なペナルティ関数によるチコノフ正則化を考える。
我々は,Besov法則の厳格な罰則を導出し,X線トモグラフィーの文脈における観測値との対応性を数値的に示す。
- 参考スコア(独自算出の注目度): 1.7778609937758323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a statistical inverse learning problem, where the task is to
estimate a function $f$ based on noisy point evaluations of $Af$, where $A$ is
a linear operator. The function $Af$ is evaluated at i.i.d. random design
points $u_n$, $n=1,...,N$ generated by an unknown general probability
distribution. We consider Tikhonov regularization with general convex and
$p$-homogeneous penalty functionals and derive concentration rates of the
regularized solution to the ground truth measured in the symmetric Bregman
distance induced by the penalty functional. We derive concrete rates for Besov
norm penalties and numerically demonstrate the correspondence with the observed
rates in the context of X-ray tomography.
- Abstract(参考訳): 我々は,統計逆学習問題を考える。そこでは,騒音点評価値である$af$ に基づいて関数 $f$ を推定し,ここでは$a$ を線形作用素とする。
関数 $Af$ は i.i.d で評価される。
ランダム設計ポイント $u_n$, $n=1,...,n$ 未知の一般確率分布によって生成される。
一般凸関数と$p$-均質ペナルティ関数によるティコノフ正規化と、ペナルティ関数によって誘導される対称ブレグマン距離で測定された基底真理に対する正規化解の導出濃度率を検討する。
我々は,Besov法則の厳格な罰則を導出し,X線トモグラフィーの文脈における観測値との対応性を数値的に示す。
関連論文リスト
- Optimal score estimation via empirical Bayes smoothing [13.685846094715364]
未知確率分布$rho*$のスコア関数を$n$独立分布および$d$次元における同一分布観測から推定する問題について検討する。
ガウスカーネルに基づく正規化スコア推定器は、一致するミニマックス下界によって最適に示され、この値が得られることを示す。
論文 参考訳(メタデータ) (2024-02-12T16:17:40Z) - $L^1$ Estimation: On the Optimality of Linear Estimators [64.76492306585168]
この研究は、条件中央値の線型性を誘導する$X$上の唯一の先行分布がガウス分布であることを示している。
特に、条件分布 $P_X|Y=y$ がすべての$y$に対して対称であるなら、$X$ はガウス分布に従う必要がある。
論文 参考訳(メタデータ) (2023-09-17T01:45:13Z) - Universality laws for Gaussian mixtures in generalized linear models [22.154969876570238]
一般化線形推定器の族(Theta_1, dots, Theta_M)の合同統計について検討する。
これにより、トレーニングや一般化エラーなど、異なる量の興味の普遍性を証明できる。
我々は,本研究の結果を,アンサンブルや不確実性など,興味のあるさまざまな機械学習タスクに応用することについて議論する。
論文 参考訳(メタデータ) (2023-02-17T15:16:06Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
既知の滑らかな関数 $f$ の値を未知の点 $boldsymbolmu in mathbbRn$ で推定する問題について検討する。
我々は、各座標の重要性に応じてサンプルを学習するインスタンス適応アルゴリズムを設計し、少なくとも1-delta$の確率で$epsilon$の正確な推定値である$f(boldsymbolmu)$を返す。
論文 参考訳(メタデータ) (2022-03-18T18:50:52Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Learning the optimal regularizer for inverse problems [1.763934678295407]
線形逆問題 $y=Ax+epsilon$ を考えると、$Acolon Xto Y$ は分離可能なヒルベルト空間 $X$ と $Y$ の間の既知の線型作用素である。
この設定は、デノイング、デブロアリング、X線トモグラフィーなど、画像のいくつかの逆問題を含んでいる。
古典的な正規化の枠組みの中では、正規化関数が優先順位を与えられず、データから学習される場合に焦点を当てる。
論文 参考訳(メタデータ) (2021-06-11T17:14:27Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
このモデルに基づく最小二乗リスクに対する1パス, 固定段差勾配勾配の収束度を解析した。
特殊な場合として、ランダムなサンプリング点における値のノイズのない観測から単位区間上の実関数を推定するオンラインアルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-15T08:25:50Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
本稿では,分離可能なデータの強化に関する高精度な高次元理論を確立する。
統計モデルのクラスでは、ブースティングの普遍性誤差を正確に解析する。
また, 推力試験誤差と最適ベイズ誤差の関係を明示的に説明する。
論文 参考訳(メタデータ) (2020-02-05T00:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。