論文の概要: Abstraction and Analogy-Making in Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2102.10717v1
- Date: Mon, 22 Feb 2021 00:12:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 15:02:52.860225
- Title: Abstraction and Analogy-Making in Artificial Intelligence
- Title(参考訳): 人工知能の抽象化とアナロジー-メイキング
- Authors: Melanie Mitchell
- Abstract要約: 現在のAIシステムは、人間のような抽象化やアナロジーを形成する能力に近づきません。
本稿では,記号的手法,深層学習,確率的プログラム誘導など,この目標に対するいくつかのアプローチの利点と限界についてレビューする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conceptual abstraction and analogy-making are key abilities underlying
humans' abilities to learn, reason, and robustly adapt their knowledge to new
domains. Despite of a long history of research on constructing AI systems with
these abilities, no current AI system is anywhere close to a capability of
forming humanlike abstractions or analogies. This paper reviews the advantages
and limitations of several approaches toward this goal, including symbolic
methods, deep learning, and probabilistic program induction. The paper
concludes with several proposals for designing challenge tasks and evaluation
measures in order to make quantifiable and generalizable progress in this area.
- Abstract(参考訳): 概念的抽象化と類推は、知識を新しい領域にしっかりと適応させる人間の能力の根底にある重要な能力である。
これらの能力を持つAIシステムの構築に関する長い研究にもかかわらず、現在のAIシステムは人間のような抽象化やアナロジーを形成する能力に近づきません。
本稿では,記号的手法,深層学習,確率的プログラム誘導など,この目標に対するいくつかのアプローチの利点と限界についてレビューする。
本論文では, この領域における定量的かつ一般化可能な進展を実現するために, 課題タスクの設計と評価手法に関するいくつかの提案を締めくくる。
関連論文リスト
- Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - From Reals to Logic and Back: Inventing Symbolic Vocabularies, Actions,
and Models for Planning from Raw Data [20.01856556195228]
本稿では,抽象状態と行動に対する論理に基づく関係表現を自律的に学習する最初の手法を提案する。
学習された表現は自動発明されたPDDLのようなドメインモデルを構成する。
決定論的設定における実証的な結果は、少数のロボット軌道から強力な抽象表現を学ぶことができることを示している。
論文 参考訳(メタデータ) (2024-02-19T06:28:21Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Evaluating Understanding on Conceptual Abstraction Benchmarks [0.0]
AIの長期的な目標は、人間のような方法で概念を理解するシステムを構築することである。
概念を理解するには、さまざまなコンテキストでそれを使う能力が必要である、と私たちは主張する。
我々の概念に基づく評価アプローチは、従来のテストセットが隠したはずのAIシステムに関する情報を明らかにする。
論文 参考訳(メタデータ) (2022-06-28T17:52:46Z) - A Critical Review of Inductive Logic Programming Techniques for
Explainable AI [9.028858411921906]
インダクティブ論理プログラミング(英: Inductive Logic Programming、ILP)は、人工知能のサブフィールドである。
ILPは、例と背景知識から説明可能な一階クラッサル理論を生成する。
既存のILPシステムは、しばしば広大な解空間を持ち、誘導された解はノイズや乱れに非常に敏感である。
論文 参考訳(メタデータ) (2021-12-31T06:34:32Z) - Conceptual Modeling and Artificial Intelligence: Mutual Benefits from
Complementary Worlds [0.0]
これまでのところ、主に分離されたCMとAIの分野にアプローチする2つの交差点に取り組むことに興味があります。
このワークショップでは、(一)概念モデリング(CM)がAIにどのような貢献ができるのか、(一)その逆の方法で、多様体相互利益を実現することができるという仮定を取り入れている。
論文 参考訳(メタデータ) (2021-10-16T18:42:09Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Thinking Fast and Slow in AI [38.8581204791644]
本稿では,人間の意思決定の認知理論からインスピレーションを得たAI研究の方向性を提案する。
前提は、AIでまだ不足しているいくつかの人間の能力の原因について洞察を得ることができれば、AIシステムで同様の能力を得ることができるということです。
論文 参考訳(メタデータ) (2020-10-12T20:10:05Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。