論文の概要: Provably Correct Training of Neural Network Controllers Using
Reachability Analysis
- arxiv url: http://arxiv.org/abs/2102.10806v1
- Date: Mon, 22 Feb 2021 07:08:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 14:33:22.221416
- Title: Provably Correct Training of Neural Network Controllers Using
Reachability Analysis
- Title(参考訳): 到達性解析を用いたニューラルネットワークコントローラの正解訓練
- Authors: Xiaowu Sun, Yasser Shoukry
- Abstract要約: 我々は、安全と生活性を満たすことが保証されるサイバー物理システムのためのニューラルネットワーク(NN)コントローラのトレーニングの問題を考える。
我々のアプローチは、動的システムのためのモデルベース設計手法とデータ駆動アプローチを組み合わせることで、この目標を達成することである。
- 参考スコア(独自算出の注目度): 3.04585143845864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider the problem of training neural network (NN)
controllers for cyber-physical systems (CPS) that are guaranteed to satisfy
safety and liveness properties. Our approach is to combine model-based design
methodologies for dynamical systems with data-driven approaches to achieve this
target. Given a mathematical model of the dynamical system, we compute a
finite-state abstract model that captures the closed-loop behavior under all
possible neural network controllers. Using this finite-state abstract model,
our framework identifies the subset of NN weights that are guaranteed to
satisfy the safety requirements. During training, we augment the learning
algorithm with a NN weight projection operator that enforces the resulting NN
to be provably safe. To account for the liveness properties, the proposed
framework uses the finite-state abstract model to identify candidate NN weights
that may satisfy the liveness properties. Using such candidate NN weights, the
proposed framework biases the NN training to achieve the liveness
specification. Achieving the guarantees above, can not be ensured without
correctness guarantees on the NN architecture, which controls the NN's
expressiveness. Therefore, and as a corner step in the proposed framework is
the ability to select provably correct NN architectures automatically.
- Abstract(参考訳): 本稿では,サイバーフィジカルシステム(cps)のためのニューラルネットワーク(nn)コントローラの安全性と動作特性を保証したトレーニング問題について考察する。
我々のアプローチは、動的システムのためのモデルベース設計手法とデータ駆動アプローチを組み合わせることで、この目標を達成することである。
力学系の数学的モデルを考えると、全ての可能なニューラルネットワークコントローラの下で閉ループの挙動を捉える有限状態抽象モデルを計算する。
この有限状態抽象モデルを用いて,安全要件を満たすことが保証されるNN重みのサブセットを特定する。
トレーニング中、NNウェイトプロジェクション演算子を用いて学習アルゴリズムを拡張し、NNが確実に安全であることを強制する。
提案手法では,生存特性を考慮した有限状態抽象モデルを用いて,生存特性を満たす可能性のあるnn重み候補を同定する。
提案フレームワークは,このようなnnの重み付けを用いてnnのトレーニングを偏り,ライブネス仕様を実現する。
上記の保証を達成することは、NNの表現力を制御するNNアーキテクチャの正確性保証なしには保証できない。
したがって、提案フレームワークの要となるのは、確実に正しいNNアーキテクチャを自動選択できる点である。
関連論文リスト
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Safety Filter Design for Neural Network Systems via Convex Optimization [35.87465363928146]
ニューラルネットワーク(NN)システムの安全性を確保するために,凸最適化に依存する新しい安全フィルタを提案する。
非線形振り子システムにおいて,提案手法の有効性を数値的に示す。
論文 参考訳(メタデータ) (2023-08-16T01:30:13Z) - Scaling Model Checking for DNN Analysis via State-Space Reduction and
Input Segmentation (Extended Version) [12.272381003294026]
既存のフレームワークは、トレーニングされたNNに対して堅牢性と/または安全性を保証する。
我々は、広範囲のNNプロパティを分析するための最初のモデルチェックベースのフレームワークであるFANNetを提案した。
本研究は,形式的NN解析のスケーラビリティとタイミング効率を向上させるために,状態空間の削減と入力セグメント化手法を開発する。
論文 参考訳(メタデータ) (2023-06-29T22:18:07Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - Automated Repair of Neural Networks [0.26651200086513094]
安全でないNNの安全仕様を修復するためのフレームワークを提案する。
提案手法では,重み値のいくつかを修正して,新しい安全なNN表現を探索することができる。
我々は,提案するフレームワークが安全なNNを実現する能力を示す広範な実験を行った。
論文 参考訳(メタデータ) (2022-07-17T12:42:24Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Provably Safe Model-Based Meta Reinforcement Learning: An
Abstraction-Based Approach [3.569867801312134]
本研究では,不確実な非線形力学系に対して,確実に安全なニューラルネットワーク(NN)コントローラをトレーニングする問題を考察する。
私たちのアプローチは、トレーニングフェーズ中にNNコントローラのセットを学ぶことです。
タスクが実行時に利用可能になると、我々のフレームワークはこれらのNNコントローラのサブセットを慎重に選択し、最終的なNNコントローラを構成する。
論文 参考訳(メタデータ) (2021-09-03T00:38:05Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。