論文の概要: Safety Filter Design for Neural Network Systems via Convex Optimization
- arxiv url: http://arxiv.org/abs/2308.08086v2
- Date: Mon, 28 Aug 2023 15:40:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 20:57:57.148049
- Title: Safety Filter Design for Neural Network Systems via Convex Optimization
- Title(参考訳): 凸最適化によるニューラルネットワークシステムの安全フィルタ設計
- Authors: Shaoru Chen, Kong Yao Chee, Nikolai Matni, M. Ani Hsieh, George J.
Pappas
- Abstract要約: ニューラルネットワーク(NN)システムの安全性を確保するために,凸最適化に依存する新しい安全フィルタを提案する。
非線形振り子システムにおいて,提案手法の有効性を数値的に示す。
- 参考スコア(独自算出の注目度): 35.87465363928146
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the increase in data availability, it has been widely demonstrated that
neural networks (NN) can capture complex system dynamics precisely in a
data-driven manner. However, the architectural complexity and nonlinearity of
the NNs make it challenging to synthesize a provably safe controller. In this
work, we propose a novel safety filter that relies on convex optimization to
ensure safety for a NN system, subject to additive disturbances that are
capable of capturing modeling errors. Our approach leverages tools from NN
verification to over-approximate NN dynamics with a set of linear bounds,
followed by an application of robust linear MPC to search for controllers that
can guarantee robust constraint satisfaction. We demonstrate the efficacy of
the proposed framework numerically on a nonlinear pendulum system.
- Abstract(参考訳): データ可用性の向上に伴い、ニューラルネットワーク(NN)がデータ駆動方式で複雑なシステムダイナミクスを正確にキャプチャできることが広く実証されている。
しかし、NNのアーキテクチャ上の複雑さと非線形性は、確実に安全なコントローラの合成を困難にしている。
本研究では, モデル誤差をキャプチャできる付加的外乱に対して, nnシステムの安全性を確保するため, 凸最適化に依存する新しい安全フィルタを提案する。
提案手法は, NN検証から線形境界を持つ過近似NN力学へのツールを応用し, 続いて, 頑健な制約満足度を保証できる制御器の探索に頑健な線形MPCを適用した。
非線形振り子系における提案手法の有効性を数値的に示す。
関連論文リスト
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - Approximate non-linear model predictive control with safety-augmented neural networks [7.670727843779155]
本稿では、ニューラルネットワーク(NN)によるモデル予測制御(MPC)制御の近似を行い、高速なオンライン評価を実現する。
我々は,近似不正確性にもかかわらず,収束性や制約満足度を決定論的に保証する安全性向上を提案する。
論文 参考訳(メタデータ) (2023-04-19T11:27:06Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - Neural Network Optimal Feedback Control with Guaranteed Local Stability [2.8725913509167156]
テスト精度の高いニューラルネットワーク(NN)コントローラでは,動的システムを局所的に安定化させることができないことを示す。
提案するNNアーキテクチャは,最適化されたフィードバックポリシを学習するための半言語近似能力を維持しながら,局所的な安定性を保証する。
論文 参考訳(メタデータ) (2022-05-01T04:23:24Z) - Neural network optimal feedback control with enhanced closed loop
stability [3.0981875303080795]
近年の研究では、教師あり学習は高次元非線形力学系のための最適フィードバックコントローラを設計するための有効なツールであることが示されている。
しかし、これらのニューラルネットワーク(NN)コントローラの挙動はまだよく理解されていない。
本稿では,NNコントローラがシステムの安定化に有効であることを示すために,数値シミュレーションを用いた。
論文 参考訳(メタデータ) (2021-09-15T17:59:20Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - Provably Correct Training of Neural Network Controllers Using
Reachability Analysis [3.04585143845864]
我々は、安全と生活性を満たすことが保証されるサイバー物理システムのためのニューラルネットワーク(NN)コントローラのトレーニングの問題を考える。
我々のアプローチは、動的システムのためのモデルベース設計手法とデータ駆動アプローチを組み合わせることで、この目標を達成することである。
論文 参考訳(メタデータ) (2021-02-22T07:08:11Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
本研究では,探索学習と表現学習の両方が重要な役割を果たす課題を解決するために,ニューラルネットワークの帯域について検討する。
破滅的な忘れ込みに対して耐性があり、完全にオンラインである可能性の高いマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T14:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。