論文の概要: Instance Independence of Single Layer Quantum Approximate Optimization
Algorithm on Mixed-Spin Models at Infinite Size
- arxiv url: http://arxiv.org/abs/2102.12043v3
- Date: Tue, 7 Sep 2021 15:16:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-10 01:22:15.782449
- Title: Instance Independence of Single Layer Quantum Approximate Optimization
Algorithm on Mixed-Spin Models at Infinite Size
- Title(参考訳): 有限サイズ混合スピンモデルにおける単一層量子近似最適化アルゴリズムのインスタンス独立性
- Authors: Jahan Claes and Wim van Dam
- Abstract要約: 混合スピンモデルの場合、深さ1ドルQAOAは無限大のシステムに限らず特定のインスタンスとは独立であることを示す。
また,期待エネルギーの高次モーメントを明示的に表現し,QAOAの期待性能が集中していることを証明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the application of the Quantum Approximate Optimization
Algorithm (QAOA) to spin-glass models with random multi-body couplings in the
limit of a large number of spins. We show that for such mixed-spin models the
performance of depth $1$ QAOA is independent of the specific instance in the
limit of infinite sized systems and we give an explicit formula for the
expected performance. We also give explicit expressions for the higher moments
of the expected energy, thereby proving that the expected performance of QAOA
concentrates.
- Abstract(参考訳): 本稿では,多数のスピンの極限におけるランダムな多体結合を持つスピングラスモデルに対する量子近似最適化アルゴリズム(QAOA)の適用について検討する。
このような混合スピンモデルに対して、QAOAの深さ1ドルは無限大システムの極限における特定のインスタンスに依存しないことを示し、期待される性能について明示的な公式を与える。
また,期待エネルギーの高次モーメントを明示的に表現し,QAOAの期待性能が集中していることを証明する。
関連論文リスト
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
量子近似最適化アルゴリズム(QAOA)とその変種は、最適化問題に対処する大きな可能性を示している。
良好な性能を実現するために必要な回路深度は問題固有であり、しばしば現在の量子デバイスの最大容量を超える。
ミキサジェネレータネットワーク (MG-Net) は, 最適ミキサハミルトニアンを動的に定式化するための統合ディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2024-09-27T12:28:18Z) - The role of gaps in digitized counterdiabatic QAOA for fully-connected spin models [0.0]
量子近似最適化アルゴリズム(QAOA)に対するCD補正が提案され、標準QAOAよりも所望の精度で収束する。
本研究では,解析したインスタンスのスペクトル特性にアルゴリズムの性能が関係していることを示す。
論文 参考訳(メタデータ) (2024-09-05T13:17:56Z) - Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
近年,変分量子回路の最適化のためのQNGアルゴリズムが提案されている。
本研究では、この離散時間解が一般化形式を与えることを示すために、QNG力を持つランゲヴィン方程式を用いる。
論文 参考訳(メタデータ) (2024-09-03T15:21:16Z) - Parameter Generation of Quantum Approximate Optimization Algorithm with Diffusion Model [3.6959187484738902]
量子コンピューティングは確率最適化の分野に革命をもたらす可能性がある。
本稿では,ハイブリッド量子古典アルゴリズムであるQuantum Approximate Optimization Algorithm (QAOA)を提案する。
拡散モデルでは, 高い性能パラメータの分布を学習し, 最適パラメータに近い新しいパラメータを合成できることが示される。
論文 参考訳(メタデータ) (2024-07-17T01:18:27Z) - PAPAL: A Provable PArticle-based Primal-Dual ALgorithm for Mixed Nash Equilibrium [58.26573117273626]
2プレイヤゼロサム連続ゲームにおける非AL平衡非漸近目的関数について考察する。
連続分布戦略のための粒子ベースアルゴリズムに関する新しい知見を述べる。
論文 参考訳(メタデータ) (2023-03-02T05:08:15Z) - A kernel-based quantum random forest for improved classification [0.0]
従来の古典的学習手法を強化する量子機械学習(QML)は、その実現に様々な制限がある。
量子カーネル推定(QKE)によって計算されるカーネル関数で線形量子支援ベクトルマシン(QSVM)を拡張する。
オーバーフィッティングを制限するため、カーネル行列に低ランクNystr"om近似を適用するようモデルをさらに拡張する。
論文 参考訳(メタデータ) (2022-10-05T15:57:31Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
本稿では,量子ハードウェア上での最適化問題解決に有用な Tabu Enhanced Hybrid Quantum Optimization メタヒューリスティック手法を提案する。
提案手法の理論的収束を,イジングモデルに基づくタブ状態を保存する対象の衝突の観点から考察する。
論文 参考訳(メタデータ) (2022-09-05T07:23:03Z) - Performance and limitations of the QAOA at constant levels on large
sparse hypergraphs and spin glass models [15.857373057387669]
無限大極限におけるランダム最適化問題のアンサンブル上での任意の一定レベル(層数)における濃度特性を証明した。
我々の分析は、サドル点近似の和対パス積分によって理解することができる。
一定レベルにおけるQAOAの性能は、$qge 4$のときの純$q$-spinモデルの最適性から外れ、偶数であることを示す。
論文 参考訳(メタデータ) (2022-04-21T17:40:39Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
パフォーマンスバウンダリの定量化は、QAOAが現実のアプリケーションの解決に有効である可能性についての洞察を提供する。
QAOA は、ほとんどのグラフに対して有界な Goemans-Williamson 近似比を超える。
得られたデータセットは、QAOAパフォーマンスに関する経験的バウンダリを確立するためのベンチマークとして提示される。
論文 参考訳(メタデータ) (2021-02-12T23:12:09Z) - Momentum Q-learning with Finite-Sample Convergence Guarantee [49.38471009162477]
本稿では,有限サンプル保証を用いたモーメントに基づくQ-ラーニングアルゴリズムのクラスを解析する。
線形関数近似とマルコフサンプリングによるMomentumQの収束保証を確立する。
提案したMomentumQが他のモーメントベースのQ-ラーニングアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2020-07-30T12:27:03Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。