論文の概要: Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization
- arxiv url: http://arxiv.org/abs/2209.01799v1
- Date: Mon, 5 Sep 2022 07:23:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-27 21:05:27.156806
- Title: Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization
- Title(参考訳): tabu強化ハイブリッド量子最適化の収束性評価
- Authors: Enrico Blanzieri, Davide Pastorello, Valter Cavecchia, Alexander
Rumyantsev and Mariia Maltseva
- Abstract要約: 本稿では,量子ハードウェア上での最適化問題解決に有用な Tabu Enhanced Hybrid Quantum Optimization メタヒューリスティック手法を提案する。
提案手法の理論的収束を,イジングモデルに基づくタブ状態を保存する対象の衝突の観点から考察する。
- 参考スコア(独自算出の注目度): 58.720142291102135
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we introduce the Tabu Enhanced Hybrid Quantum Optimization
metaheuristic approach useful for optimization problem solving on a quantum
hardware. We address the theoretical convergence of the proposed scheme from
the viewpoint of the collisions in the object which stores the tabu states,
based on the Ising model. The results of numerical evaluation of the algorithm
on quantum hardware as well as on a classical semiconductor hardware model are
also demonstrated.
- Abstract(参考訳): 本稿では,量子ハードウェア上での最適化問題解決に有用な Tabu Enhanced Hybrid Quantum Optimization メタヒューリスティック手法を提案する。
提案手法の理論的収束を,イジングモデルに基づくタブ状態を保存する対象の衝突の観点から考察する。
量子ハードウェアおよび古典半導体ハードウェアモデル上でのアルゴリズムの数値評価結果も示す。
関連論文リスト
- Enhancing Quantum Diffusion Models with Pairwise Bell State Entanglement [35.436358464279785]
本稿では、ノイズ中間スケール量子(NISQ)デバイス向けに設計された新しい量子拡散モデルを提案する。
量子絡み合いと重ね合わせを利用して、このアプローチは量子生成学習を前進させる。
論文 参考訳(メタデータ) (2024-11-24T20:14:57Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
我々はこのプロトコルをバイアス場デジタルダイアバティック量子最適化(BF-DCQO)と呼ぶ。
私たちの純粋に量子的なアプローチは、古典的な変分量子アルゴリズムへの依存を排除します。
基底状態の成功確率のスケーリング改善を実現し、最大2桁まで増大する。
論文 参考訳(メタデータ) (2024-05-22T18:11:42Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - Quantum Advantage Actor-Critic for Reinforcement Learning [5.579028648465784]
本稿では,Advantage Actor-Criticアルゴリズムと変分量子回路を組み合わせた新しい量子強化学習手法を提案する。
複数の量子アドバンテージ・アクター・クリティカル構成をよく知られたカートポール環境で実証的にテストし、連続的な状態空間を持つ制御タスクにおける我々のアプローチを評価する。
論文 参考訳(メタデータ) (2024-01-13T11:08:45Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
本稿では,デジタルカウンセバティック量子最適化(DCQO)パラダイムを用いて,ポートフォリオ最適化のための高速なディジタル量子アルゴリズムを提案する。
提案手法は,アルゴリズムの回路深度要件を特に低減し,解の精度を向上し,現在の量子プロセッサに適している。
我々は,IonQトラップイオン量子コンピュータ上で最大20量子ビットを使用するプロトコルの利点を実験的に実証した。
論文 参考訳(メタデータ) (2023-08-29T17:53:08Z) - Performance Bounds for Quantum Control [0.06999740786886534]
量子フィードバックコントローラは、しばしば性能目標と最適性証明書を欠いている。
量子フィルタリング理論と2乗のモーメント・サム・オブ・二乗法を組み合わせて凸最適化問題の階層を構築する。
論文 参考訳(メタデータ) (2023-04-06T20:48:51Z) - Multi-disk clutch optimization using quantum annealing [34.82692226532414]
クラッチ製造における実用上の重要な課題を解くために,新しい量子アルゴリズムを開発した。
量子最適化が製造業における実際の産業応用においてどのように役割を果たせるかを示す。
論文 参考訳(メタデータ) (2022-08-11T16:34:51Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
変分量子アルゴリズムは、デジタル量子コンピュータを用いた最適化問題の解法として興味深い可能性を提供する。
しかし、そのようなアルゴリズムにおける達成可能な性能と量子相関の役割は未だ不明である。
我々は、IBM量子チップと同様に、システマティックな手順で高度に圧縮された状態が生成されるかを数値的に示す。
論文 参考訳(メタデータ) (2022-05-20T18:00:06Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Feedback-based quantum optimization [0.0]
本稿では,量子回路パラメータに対して,量子ビット計測の結果を構成的に割り当てる,量子最適化のためのフィードバックベースの戦略を提案する。
この手法により,量子回路の深さを単調に改善する最適化問題の解が推定されることを示す。
論文 参考訳(メタデータ) (2021-03-15T18:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。