Perspective: Purposeful Failure in Artificial Life and Artificial
Intelligence
- URL: http://arxiv.org/abs/2102.12076v1
- Date: Wed, 24 Feb 2021 05:43:44 GMT
- Title: Perspective: Purposeful Failure in Artificial Life and Artificial
Intelligence
- Authors: Lana Sinapayen
- Abstract summary: I argue that failures can be a blueprint characterizing living organisms and biological intelligence.
Imitating biological successes in Artificial Life and Artificial Intelligence can be misleading; imitating failures offers a path towards understanding and emulating life it in artificial systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complex systems fail. I argue that failures can be a blueprint characterizing
living organisms and biological intelligence, a control mechanism to increase
complexity in evolutionary simulations, and an alternative to classical fitness
optimization. Imitating biological successes in Artificial Life and Artificial
Intelligence can be misleading; imitating failures offers a path towards
understanding and emulating life it in artificial systems.
Related papers
- Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence [0.0]
The pursuit of creating artificial intelligence mirrors our longstanding fascination with understanding our own intelligence.
Recent advances in AI hold promise, but singular approaches often fall short in capturing the essence of intelligence.
This paper explores how fundamental principles from biological computation can guide the design of truly intelligent systems.
arXiv Detail & Related papers (2024-11-22T02:55:39Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Fusion Intelligence: Confluence of Natural and Artificial Intelligence for Enhanced Problem-Solving Efficiency [3.9233394969004713]
Fusion Intelligence (FI) is a bio-inspired intelligent system, where the innate sensing, intelligence and unique actuation abilities of biological organisms are integrated with the computational power of Artificial Intelligence (AI)
We demonstrate FI's potential to enhance agricultural IoT system performance through a simulated case study on improving insect pollination efficacy (entomophily)
arXiv Detail & Related papers (2024-05-16T02:10:30Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - From Biological Synapses to Intelligent Robots [0.0]
Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence.
The potential for adaptive learning and control without supervision is brought forward.
The insights collected here point toward the Hebbian model as a choice solution for intelligent robotics and sensor systems.
arXiv Detail & Related papers (2022-02-25T12:39:22Z) - The Introspective Agent: Interdependence of Strategy, Physiology, and
Sensing for Embodied Agents [51.94554095091305]
We argue for an introspective agent, which considers its own abilities in the context of its environment.
Just as in nature, we hope to reframe strategy as one tool, among many, to succeed in an environment.
arXiv Detail & Related papers (2022-01-02T20:14:01Z) - Evolutionary Self-Replication as a Mechanism for Producing Artificial
Intelligence [0.0]
Self-replication is explored as a mechanism for the emergence of intelligent behavior in modern learning environments.
Atari and robotic learning environments are re-defined in terms of natural selection.
arXiv Detail & Related papers (2021-09-16T15:40:20Z) - Synergetic Learning Systems: Concept, Architecture, and Algorithms [4.623783824925363]
We describe an artificial intelligence system called the Synergetic Learning Systems''
The system achieves intelligent information processing and decision-making in a given environment through cooperative/competitive synergetic learning.
It is expected that under our design criteria, the proposed system will eventually achieve artificial general intelligence through long term coevolution.
arXiv Detail & Related papers (2020-05-31T06:23:03Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
We introduce RoboTHOR to democratize research in interactive and embodied visual AI.
We show there exists a significant gap between the performance of models trained in simulation when they are tested in both simulations and their carefully constructed physical analogs.
arXiv Detail & Related papers (2020-04-14T20:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.