Binary segmentation of medical images using implicit spline
representations and deep learning
- URL: http://arxiv.org/abs/2102.12759v1
- Date: Thu, 25 Feb 2021 10:04:25 GMT
- Title: Binary segmentation of medical images using implicit spline
representations and deep learning
- Authors: Oliver J.D. Barrowclough, Georg Muntingh, Varatharajan Nainamalai,
Ivar Stangeby
- Abstract summary: We propose a novel approach to image segmentation based on combining implicit spline representations with deep convolutional neural networks.
For our best network, we achieve an average volumetric test Dice score of almost 92%, which reaches the state of the art for this congenital heart disease dataset.
- Score: 1.5293427903448025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel approach to image segmentation based on combining implicit
spline representations with deep convolutional neural networks. This is done by
predicting the control points of a bivariate spline function whose zero-set
represents the segmentation boundary. We adapt several existing neural network
architectures and design novel loss functions that are tailored towards
providing implicit spline curve approximations. The method is evaluated on a
congenital heart disease computed tomography medical imaging dataset.
Experiments are carried out by measuring performance in various standard
metrics for different networks and loss functions. We determine that splines of
bidegree $(1,1)$ with $128\times128$ coefficient resolution performed optimally
for $512\times 512$ resolution CT images. For our best network, we achieve an
average volumetric test Dice score of almost 92%, which reaches the state of
the art for this congenital heart disease dataset.
Related papers
- Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Orientation-guided Graph Convolutional Network for Bone Surface
Segmentation [51.51690515362261]
We propose an orientation-guided graph convolutional network to improve connectivity while segmenting the bone surface.
Our approach improves over the state-of-the-art methods by 5.01% in connectivity metric.
arXiv Detail & Related papers (2022-06-16T23:01:29Z) - Adaptation to CT Reconstruction Kernels by Enforcing Cross-domain
Feature Maps Consistency [0.06117371161379209]
We show a decrease in the COVID-19 segmentation quality of the model trained on the smooth and tested on the sharp reconstruction kernels.
We propose the unsupervised adaptation method, called F-Consistency, that outperforms the previous approaches.
arXiv Detail & Related papers (2022-03-28T10:00:03Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
Quantitative bone single-photon emission computed tomography (QBSPECT) has the potential to provide a better quantitative assessment of bone metastasis than planar bone scintigraphy.
The segmentation of anatomical regions-of-interests (ROIs) still relies heavily on the manual delineation by experts.
This work proposes a fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, bone, and background.
arXiv Detail & Related papers (2021-04-17T19:03:52Z) - CNN Based Segmentation of Infarcted Regions in Acute Cerebral Stroke
Patients From Computed Tomography Perfusion Imaging [2.1626699124055504]
Thrombolytic treatment can reduce brain damage but has a narrow treatment window.
Computed To Perfusion imaging is a commonly used primary assessment tool for stroke patients.
We propose a fully automated four-dimensional convolutional neural network based segmentation method.
arXiv Detail & Related papers (2021-04-07T09:09:13Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - A Spatially Constrained Deep Convolutional Neural Network for Nerve
Fiber Segmentation in Corneal Confocal Microscopic Images using Inaccurate
Annotations [10.761046991755311]
We propose a spatially constrained deep convolutional neural network (DCNN) to achieve smooth and robust image segmentation.
The proposed method has been evaluated based on corneal confocal microscopic ( CCM) images for nerve fiber segmentation.
arXiv Detail & Related papers (2020-04-20T16:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.