論文の概要: Distribution-Free Robust Linear Regression
- arxiv url: http://arxiv.org/abs/2102.12919v1
- Date: Thu, 25 Feb 2021 15:10:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-26 21:42:16.212044
- Title: Distribution-Free Robust Linear Regression
- Title(参考訳): 分布自由ロバスト線形回帰
- Authors: Jaouad Mourtada and Tomas Va\v{s}kevi\v{c}ius and Nikita Zhivotovskiy
- Abstract要約: 共変体の分布を仮定せずにランダムな設計線形回帰を研究する。
最適部分指数尾を持つオーダー$d/n$の過大なリスクを達成する非線形推定器を構築する。
我々は、Gy"orfi, Kohler, Krzyzak, Walk が原因で、truncated least squares 推定器の古典的境界の最適版を証明した。
- 参考スコア(独自算出の注目度): 5.532477732693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study random design linear regression with no assumptions on the
distribution of the covariates and with a heavy-tailed response variable. When
learning without assumptions on the covariates, we establish boundedness of the
conditional second moment of the response variable as a necessary and
sufficient condition for achieving deviation-optimal excess risk rate of
convergence. In particular, combining the ideas of truncated least squares,
median-of-means procedures and aggregation theory, we construct a non-linear
estimator achieving excess risk of order $d/n$ with the optimal sub-exponential
tail. While the existing approaches to learning linear classes under
heavy-tailed distributions focus on proper estimators, we highlight that the
improperness of our estimator is necessary for attaining non-trivial guarantees
in the distribution-free setting considered in this work. Finally, as a
byproduct of our analysis, we prove an optimal version of the classical bound
for the truncated least squares estimator due to Gy\"{o}rfi, Kohler, Krzyzak,
and Walk.
- Abstract(参考訳): 我々は,共変体の分布を仮定せず,重尾応答変数を用いてランダムな設計線形回帰を研究する。
共変体の仮定なしに学習する場合、応答変数の条件付き第2モーメントの境界性は、収束の偏差最適過剰リスク率を達成するために必要かつ十分な条件として確立される。
特に,最小二乗法,平均中央値法,凝集理論の考え方を組み合わせることで,次数$d/n$ の過大なリスクを最適部分指数尾と達成する非線形推定器を構築する。
重み付き分布の下で線形クラスを学習する既存のアプローチは適切な推定子に焦点を当てているが、本研究で検討されている分布自由設定における非自明な保証を達成するためには、推定子の不適切性が必要であることを強調する。
最後に、解析の副産物として、Gy\"{o}rfi, Kohler, Krzyzak, Walk によるtruncated least squares estimator に対する古典有界の最適バージョンを証明する。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Pitfall of Optimism: Distributional Reinforcement Learning by
Randomizing Risk Criterion [9.35556128467037]
本稿では,リスクの一方的な傾向を避けるために,リスク基準のランダム化によって行動を選択する新しい分散強化学習アルゴリズムを提案する。
理論的結果は,提案手法がバイアス探索に該当せず,最適回帰に収束することが保証されていることを裏付けるものである。
論文 参考訳(メタデータ) (2023-10-25T10:53:04Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Online and Distribution-Free Robustness: Regression and Contextual
Bandits with Huber Contamination [29.85468294601847]
線形回帰と文脈的帯域幅という2つの古典的高次元オンライン学習問題を再考する。
従来の手法が失敗した場合にアルゴリズムが成功することを示す。
論文 参考訳(メタデータ) (2020-10-08T17:59:05Z) - Robust regression with covariate filtering: Heavy tails and adversarial
contamination [6.939768185086755]
より強い汚染モデルにおいて,ハマー回帰,最小トリミング正方形,最小絶対偏差推定器を同時に計算および統計的に効率的に推定する方法を示す。
この設定では、ハマー回帰推定器がほぼ最適誤差率を達成するのに対し、最小のトリミング正方形と最小の絶対偏差推定器は、後処理ステップを適用した後、ほぼ最適誤差を達成することができる。
論文 参考訳(メタデータ) (2020-09-27T22:48:48Z) - Suboptimality of Constrained Least Squares and Improvements via
Non-Linear Predictors [3.5788754401889014]
有界ユークリッド球における正方形損失に対する予測問題と最良の線形予測器について検討する。
最小二乗推定器に対する$O(d/n)$過剰リスク率を保証するのに十分な分布仮定について論じる。
論文 参考訳(メタデータ) (2020-09-19T21:39:46Z) - On Low-rank Trace Regression under General Sampling Distribution [9.699586426043885]
クロスバリデード推定器は一般仮定でほぼ最適誤差境界を満たすことを示す。
また, クロスバリデーション推定器はパラメータ選択理論に着想を得た手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2019-04-18T02:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。