A Coherence-Protection Scheme for Quantum Sensors Based on Ultra-Shallow Single Nitrogen-Vacancy Centers in Diamond
- URL: http://arxiv.org/abs/2501.00180v2
- Date: Tue, 21 Jan 2025 19:41:21 GMT
- Title: A Coherence-Protection Scheme for Quantum Sensors Based on Ultra-Shallow Single Nitrogen-Vacancy Centers in Diamond
- Authors: Anton Pershin, András Tárkányi, Vladimir Verkhovlyuk, Viktor Ivády, Adam Gali,
- Abstract summary: We show that the spin coherence times of the ultra-shallow 1-nanometer deep NV center can be significantly enhanced near the spin-phonon limited regime at room temperature in $12$C enriched diamonds.
Our protocol is beneficial to $sim$10-nanometers deep NV centers in natural diamond too where the variable coherence properties of the center to the direction of the small constant magnetic fields establish vector magnetometry at the nanoscale.
- Score: 0.0
- License:
- Abstract: Recent advances in the engineering of diamond surfaces make it possible to stabilize the charge state of 7-30 nanometers deep nitrogen-vacancy (NV) quantum sensors in diamond and to remove the charge noise at the surface principally. However, it is still a challenge to simultaneously increase the action volume of the quantum sensor by placing NV centers 0.5-2 nanometers deep and to maintain their favorable spin coherence properties which are limited by the magnetic noise from the fluctuating nuclear spins of the surface termination of diamond. Here we show by means of first principles simulations that leveraging the interplay of the surface-induced strain and small constant magnetic fields, the spin coherence times of the ultra-shallow 1-nanometer deep NV center can be significantly enhanced near the spin-phonon limited regime at room temperature in $^{12}$C enriched diamonds. We demonstrate that our protocol is beneficial to $\sim$10-nanometers deep NV centers in natural diamond too where the variable coherence properties of the center to the direction of the small constant magnetic fields establish vector magnetometry at the nanoscale.
Related papers
- Ultra-high strained diamond spin register with coherent optical link [45.40010446596688]
Solid-state spin defects, such as color centers in diamond, are among the most promising candidates for scalable and integrated quantum technologies.
We show that leveraging an ultra-high strained silicon-vacancy center inside a nanodiamond allows us to coherently and efficiently control its electron spin, while mitigating phonon-induced dephasing at liquid helium temperature.
Our work paves the way for future integration of quantum network registers into conventional, well-established photonics and hybrid quantum communication systems.
arXiv Detail & Related papers (2024-09-19T10:46:24Z) - Diamond Surface Functionalization via Visible Light-Driven C-H
Activation for Nanoscale Quantum Sensing [0.31643181327064157]
Nitrogen-vacancy centers in diamond are a promising platform for nanoscale nuclear magnetic resonance sensing.
NV molecular sensing requires that target molecules are immobilized within a few nanometers of NV centers with long spin coherence time.
We report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light.
arXiv Detail & Related papers (2023-09-13T23:47:44Z) - Quantum control and Berry phase of electron spins in rotating levitated diamonds in high vacuum [40.27879500842531]
Levitated diamond particles in high vacuum with internal spin qubits have been proposed for exploring quantum mechanics.
We fabricate an integrated surface ion trap with multiple stabilization electrodes.
This facilitates on-chip levitation and, for the first time, optically detected magnetic resonance measurements of a nanodiamond levitated in high vacuum.
arXiv Detail & Related papers (2023-09-11T20:56:09Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Preparing highly entangled states of nanodiamond rotation and NV center
spin [0.913755431537592]
A nanodiamond with an embedded nitrogen-vacancy (NV) center is one of the experimental systems that can be coherently manipulated within current technologies.
Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a network connecting these microscopic and mesoscopic motions.
arXiv Detail & Related papers (2023-05-13T21:17:14Z) - Mitigation of Nitrogen Vacancy Ionization from Material Integration for
Quantum Sensing [0.0]
The nitrogen-vacancy (NV) color center in diamond has demonstrated great promise in a wide range of quantum sensing.
The insulating layer of alumina between the metal and diamond provide improved photoluminescence and higher sensitivity in all modes of sensing.
arXiv Detail & Related papers (2023-04-13T03:10:53Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Diamond surface engineering for molecular sensing with nitrogen-vacancy
centers [0.0]
Quantum sensing using optically addressable atomic-scale defects, such as the nitrogen--vacancy center in diamond, provides new opportunities for sensitive and highly localized characterization of chemical functionality.
This Review provides a survey of the rapidly converging fields of diamond surface science and NV-center physics, highlighting their combined potential for quantum sensing of molecules.
arXiv Detail & Related papers (2022-07-15T14:46:24Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Angle Locking of a Levitating Diamond using Spin-Diamagnetism [0.0]
We report on angle locking of the crystalline axis of a trapped micro-diamond along an external magnetic field.
Specifically, we use spin population inversion after a ground state level crossing of the NV center to turn the diamond into a diamagnet.
The diamond crystalline axis naturally aligns to the magnetic field with high precision and in the absence of micro-wave, offering bright prospects for applications in biology and spin-mechanical platforms.
arXiv Detail & Related papers (2021-02-26T18:30:04Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.