論文の概要: Meta-Learning with Graph Neural Networks: Methods and Applications
- arxiv url: http://arxiv.org/abs/2103.00137v1
- Date: Sat, 27 Feb 2021 06:19:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-06 00:43:45.439672
- Title: Meta-Learning with Graph Neural Networks: Methods and Applications
- Title(参考訳): グラフニューラルネットワークによるメタラーニング:方法と応用
- Authors: Debmalya Mandal, Sourav Medya, Brian Uzzi, and Charu Aggarwal
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフデータ上のディープニューラルネットワークの一般化である。
利用可能なサンプルが少ない場合、GNNは制限される。
近年、研究者はGNNにメタラーニングを適用し始めている。
- 参考スコア(独自算出の注目度): 5.804439462187914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs), a generalization of deep neural networks on
graph data have been widely used in various domains, ranging from drug
discovery to recommender systems. However, GNNs on such applications are
limited when there are few available samples. Meta-learning has been an
important framework to address the lack of samples in machine learning, and in
recent years, the researchers have started to apply meta-learning to GNNs. In
this work, we provide a comprehensive survey of different meta-learning
approaches involving GNNs on various graph problems showing the power of using
these two approaches together. We categorize the literature based on proposed
architectures, shared representations, and applications. Finally, we discuss
several exciting future research directions and open problems.
- Abstract(参考訳): グラフデータに基づくディープニューラルネットワークの一般化であるグラフニューラルネットワーク(GNN)は、薬物発見からレコメンダシステムまで、さまざまな領域で広く利用されている。
しかしながら、そのようなアプリケーション上のGNNは、利用可能なサンプルが少ない場合に限られる。
メタラーニングは機械学習におけるサンプルの欠如に対処する重要なフレームワークであり、近年ではGNNにメタラーニングを適用し始めている。
本稿では,これらの2つのアプローチを併用する能力を示すグラフ問題に対して,GNN が関与する様々なメタラーニング手法を包括的に調査する。
提案するアーキテクチャ,共有表現,アプリケーションに基づいて文献を分類する。
最後に,エキサイティングな今後の研究方向とオープンな課題について論じる。
関連論文リスト
- Learning Regularization for Graph Inverse Problems [16.062351610520693]
グラフ逆問題(GRIP)を解決するためにGNNを利用するフレームワークを導入する。
このフレームワークは、データに適合するソリューションを見つけるために使用される、可能性と事前条件の組み合わせに基づいている。
本稿では,フレームワークの有効性を示す代表的問題について検討する。
論文 参考訳(メタデータ) (2024-08-19T22:03:02Z) - A Systematic Review of Deep Graph Neural Networks: Challenges,
Classification, Architectures, Applications & Potential Utility in
Bioinformatics [0.0]
グラフニューラルネットワーク(GNN)は、グラフ依存を表現するためにグラフノード間のメッセージ送信を使用する。
GNNは、バイオインフォマティクス研究における幅広い生物学的課題を解決するための優れたツールとなる可能性がある。
論文 参考訳(メタデータ) (2023-11-03T10:25:47Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - The Evolution of Distributed Systems for Graph Neural Networks and their
Origin in Graph Processing and Deep Learning: A Survey [17.746899445454048]
グラフニューラルネットワーク(GNN)は、新たな研究分野である。
GNNはレコメンデーションシステム、コンピュータビジョン、自然言語処理、生物学、化学など様々な分野に適用できる。
我々は,大規模GNNソリューションの重要な手法と手法を要約し,分類することで,このギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2023-05-23T09:22:33Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
グラフレベルのニューラルネットワーク(GLNN、ディープラーニングベースのグラフレベルの学習法)は、高次元データのモデリングにおいて優れているため、魅力的である。
本稿では,深層ニューラルネットワーク,グラフニューラルネットワーク,グラフプール上でのGLNNを網羅する系統分類法を提案する。
論文 参考訳(メタデータ) (2022-05-31T06:16:55Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Ranking Structured Objects with Graph Neural Networks [0.0]
RankGNNはグラフ間のペアワイズ選好のセットでトレーニングされており、一方が他方よりも好まれていることを示唆している。
この問題の実用的な適用の1つは薬剤の候補者の大規模なコレクションの最も有望な分子を見つけたいと思う薬剤のスクリーニングです。
提案するペアワイズrankgnnアプローチが,平均的なポイントワイズベースラインアプローチのランキング性能を有意に上回っているか,少なくとも同等であることを示す。
論文 参考訳(メタデータ) (2021-04-18T14:40:59Z) - Computing Graph Neural Networks: A Survey from Algorithms to
Accelerators [2.491032752533246]
グラフニューラルネットワーク(GNN)は、グラフ構造化データからモデル化および学習する能力のため、近年、機械学習の現場で爆発的に普及している。
本稿では,GNNの分野をコンピュータの観点から概観する。
現在のソフトウェアとハードウェアアクセラレーションスキームの詳細な分析を行う。
論文 参考訳(メタデータ) (2020-09-30T22:29:27Z) - Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph
Neural Networks [52.76042362922247]
グラフニューラルネットワーク(GNN)は、非ユークリッドグラフ構造を扱うように設計されている。
既存のGNNは様々な手法を用いて提示され、直接比較と相互参照がより複雑になる。
既存のGNNを空間およびスペクトル領域に整理し、各領域内の接続を公開する。
論文 参考訳(メタデータ) (2020-02-27T01:15:10Z) - Node Masking: Making Graph Neural Networks Generalize and Scale Better [71.51292866945471]
グラフニューラルネットワーク(GNN)は近年,多くの関心を集めている。
本稿では,芸術空間のGNNの状態によって実行される操作をよりよく可視化するために,いくつかの理論ツールを利用する。
私たちはNode Maskingというシンプルなコンセプトを導入しました。
論文 参考訳(メタデータ) (2020-01-17T06:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。