論文の概要: Learning Regularization for Graph Inverse Problems
- arxiv url: http://arxiv.org/abs/2408.10436v1
- Date: Mon, 19 Aug 2024 22:03:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 17:33:21.628440
- Title: Learning Regularization for Graph Inverse Problems
- Title(参考訳): グラフ逆問題に対する正規化学習
- Authors: Moshe Eliasof, Md Shahriar Rahim Siddiqui, Carola-Bibiane Schönlieb, Eldad Haber,
- Abstract要約: グラフ逆問題(GRIP)を解決するためにGNNを利用するフレームワークを導入する。
このフレームワークは、データに適合するソリューションを見つけるために使用される、可能性と事前条件の組み合わせに基づいている。
本稿では,フレームワークの有効性を示す代表的問題について検討する。
- 参考スコア(独自算出の注目度): 16.062351610520693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Graph Neural Networks (GNNs) have been utilized for various applications ranging from drug discovery to network design and social networks. In many applications, it is impossible to observe some properties of the graph directly; instead, noisy and indirect measurements of these properties are available. These scenarios are coined as Graph Inverse Problems (GRIP). In this work, we introduce a framework leveraging GNNs to solve GRIPs. The framework is based on a combination of likelihood and prior terms, which are used to find a solution that fits the data while adhering to learned prior information. Specifically, we propose to combine recent deep learning techniques that were developed for inverse problems, together with GNN architectures, to formulate and solve GRIP. We study our approach on a number of representative problems that demonstrate the effectiveness of the framework.
- Abstract(参考訳): 近年,薬物発見からネットワーク設計,ソーシャルネットワークに至るまで,さまざまな用途にグラフニューラルネットワーク(GNN)が利用されている。
多くの応用において、グラフのいくつかの性質を直接観察することは不可能であり、代わりに、これらの性質のノイズと間接的な測定が利用可能である。
これらのシナリオはグラフ逆問題(GRIP)と呼ばれる。
本稿では,GNNを利用してGRIPを解くフレームワークを提案する。
このフレームワークは、学習した事前情報に固執しながらデータに適合するソリューションを見つけるために使用される、可能性と事前条件の組み合わせに基づいている。
具体的には,逆問題に対して開発された近年のディープラーニング技術とGNNアーキテクチャを組み合わせて,GRIPの定式化と解法を提案する。
本稿では,フレームワークの有効性を示す代表的問題について検討する。
関連論文リスト
- The Evolution of Distributed Systems for Graph Neural Networks and their
Origin in Graph Processing and Deep Learning: A Survey [17.746899445454048]
グラフニューラルネットワーク(GNN)は、新たな研究分野である。
GNNはレコメンデーションシステム、コンピュータビジョン、自然言語処理、生物学、化学など様々な分野に適用できる。
我々は,大規模GNNソリューションの重要な手法と手法を要約し,分類することで,このギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2023-05-23T09:22:33Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - GDDR: GNN-based Data-Driven Routing [0.0]
グラフニューラルネットワーク(GNN)を用いたアプローチは、多層パーセプトロンアーキテクチャを用いた以前の作業と同様に、少なくとも実行できることを示した。
GNNには、トレーニングされたエージェントを、余分な作業なしで異なるネットワークトポロジに一般化できるというメリットが加えられている。
論文 参考訳(メタデータ) (2021-04-20T12:12:17Z) - Meta-Learning with Graph Neural Networks: Methods and Applications [5.804439462187914]
グラフニューラルネットワーク(GNN)は、グラフデータ上のディープニューラルネットワークの一般化である。
利用可能なサンプルが少ない場合、GNNは制限される。
近年、研究者はGNNにメタラーニングを適用し始めている。
論文 参考訳(メタデータ) (2021-02-27T06:19:11Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
論文 参考訳(メタデータ) (2020-02-13T00:03:09Z) - Gated Graph Recurrent Neural Networks [176.3960927323358]
グラフ処理の一般的な学習フレームワークとしてグラフリカレントニューラルネットワーク(GRNN)を導入する。
勾配の消失問題に対処するため,時間,ノード,エッジゲートの3つの異なるゲーティング機構でGRNNを前進させた。
数値的な結果は、GRNNがGNNやRNNよりも優れており、グラフプロセスの時間構造とグラフ構造の両方を考慮することが重要であることを示している。
論文 参考訳(メタデータ) (2020-02-03T22:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。