論文の概要: Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2503.23167v2
- Date: Sun, 13 Apr 2025 18:48:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:44:52.166089
- Title: Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
- Title(参考訳): グラフODEとそれを超える:グラフニューラルネットワークによる微分方程式の統合に関する総合的な調査
- Authors: Zewen Liu, Xiaoda Wang, Bohan Wang, Zijie Huang, Carl Yang, Wei Jin,
- Abstract要約: グラフニューラルネットワーク(GNN)と微分方程式(DE)は、近年顕著な相乗効果を示す研究分野として急速に進歩している。
既存の手法を分類し、その基礎となる原則を議論し、分子モデリング、交通予測、流行拡散といった分野にまたがる応用を強調します。
- 参考スコア(独自算出の注目度): 32.422289591028935
- License:
- Abstract: Graph Neural Networks (GNNs) and differential equations (DEs) are two rapidly advancing areas of research that have shown remarkable synergy in recent years. GNNs have emerged as powerful tools for learning on graph-structured data, while differential equations provide a principled framework for modeling continuous dynamics across time and space. The intersection of these fields has led to innovative approaches that leverage the strengths of both, enabling applications in physics-informed learning, spatiotemporal modeling, and scientific computing. This survey aims to provide a comprehensive overview of the burgeoning research at the intersection of GNNs and DEs. We will categorize existing methods, discuss their underlying principles, and highlight their applications across domains such as molecular modeling, traffic prediction, and epidemic spreading. Furthermore, we identify open challenges and outline future research directions to advance this interdisciplinary field. A comprehensive paper list is provided at https://github.com/Emory-Melody/Awesome-Graph-NDEs. This survey serves as a resource for researchers and practitioners seeking to understand and contribute to the fusion of GNNs and DEs
- Abstract(参考訳): グラフニューラルネットワーク(GNN)と微分方程式(DE)は、近年顕著な相乗効果を示す研究分野として急速に進歩している。
GNNはグラフ構造化データについて学習するための強力なツールとして登場し、微分方程式は時間と空間にわたって連続的なダイナミクスをモデル化するための原則化されたフレームワークを提供する。
これらの分野の交わりは、両者の強みを活用する革新的なアプローチをもたらし、物理学インフォームドラーニング、時空間モデリング、科学計算の応用を可能にした。
本調査は,GNN と DEs の交差点における急成長する研究の概要を概観することを目的としている。
既存の手法を分類し、その基礎となる原則を議論し、分子モデリング、交通予測、流行拡散といった分野にまたがる応用を強調します。
さらに、オープンな課題を特定し、今後の研究の方向性を概説し、この学際的な分野を推し進める。
包括的なペーパーリストはhttps://github.com/Emory-Melody/Awesome-Graph-NDEsで提供されている。
この調査は、GNNとDsの融合を理解し、貢献しようとする研究者や実践者のリソースとなる。
関連論文リスト
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - A Systematic Review of Deep Graph Neural Networks: Challenges,
Classification, Architectures, Applications & Potential Utility in
Bioinformatics [0.0]
グラフニューラルネットワーク(GNN)は、グラフ依存を表現するためにグラフノード間のメッセージ送信を使用する。
GNNは、バイオインフォマティクス研究における幅広い生物学的課題を解決するための優れたツールとなる可能性がある。
論文 参考訳(メタデータ) (2023-11-03T10:25:47Z) - Graph Foundation Models: Concepts, Opportunities and Challenges [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
一般化と適応における基礎モデルの能力は、グラフ機械学習研究者を動機付け、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - The Expressive Power of Graph Neural Networks: A Survey [8.652204270723994]
定義の異なる表現力向上モデルに関する第1回調査を行う。
モデルは、グラフ機能拡張、グラフトポロジ拡張、GNNアーキテクチャ拡張という3つのカテゴリに基づいてレビューされる。
論文 参考訳(メタデータ) (2023-08-16T09:12:21Z) - Deep learning for dynamic graphs: models and benchmarks [16.851689741256912]
近年,Deep Graph Networks (DGNs) の研究が進展し,グラフ上の学習領域が成熟した。
この研究分野の成長にもかかわらず、まだ解決されていない重要な課題がまだ残っている。
論文 参考訳(メタデータ) (2023-07-12T12:02:36Z) - Graph Neural Networks for temporal graphs: State of the art, open
challenges, and opportunities [15.51428011794213]
グラフニューラルネットワーク(GNN)は、(静的)グラフ構造化データを学ぶための主要なパラダイムとなっている。
近年, 時間グラフのためのGNNベースのモデルが, GNNの能力を拡張すべく, 有望な研究領域として浮上している。
本稿では、時間的GNNの現状を概観し、学習設定とタスクの厳密な形式化を導入する。
調査は、研究と応用の両方の観点から、この分野における最も関連性の高いオープン課題に関する議論で締めくくります。
論文 参考訳(メタデータ) (2023-02-02T11:12:51Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Meta-Learning with Graph Neural Networks: Methods and Applications [5.804439462187914]
グラフニューラルネットワーク(GNN)は、グラフデータ上のディープニューラルネットワークの一般化である。
利用可能なサンプルが少ない場合、GNNは制限される。
近年、研究者はGNNにメタラーニングを適用し始めている。
論文 参考訳(メタデータ) (2021-02-27T06:19:11Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。