論文の概要: Neuron Coverage-Guided Domain Generalization
- arxiv url: http://arxiv.org/abs/2103.00229v1
- Date: Sat, 27 Feb 2021 14:26:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 16:21:32.964898
- Title: Neuron Coverage-Guided Domain Generalization
- Title(参考訳): ニューロン被覆誘導ドメイン一般化
- Authors: Chris Xing Tian, Haoliang Li, Xiaofei Xie, Yang Liu, Shiqi Wang
- Abstract要約: 本稿では、ドメイン知識が利用できないドメイン一般化タスクに注目し、さらに悪いことに、1つのドメインからのサンプルのみをトレーニング中に利用することができる。
私たちの動機は、ディープニューラルネットワーク(DNN)テストの最近の進歩に由来し、DNNのニューロンカバレッジの最大化がDNNの潜在的な欠陥の探索に役立つことが示されています。
- 参考スコア(独自算出の注目度): 37.77033512313927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the domain generalization task where domain knowledge
is unavailable, and even worse, only samples from a single domain can be
utilized during training. Our motivation originates from the recent progresses
in deep neural network (DNN) testing, which has shown that maximizing neuron
coverage of DNN can help to explore possible defects of DNN (i.e.,
misclassification). More specifically, by treating the DNN as a program and
each neuron as a functional point of the code, during the network training we
aim to improve the generalization capability by maximizing the neuron coverage
of DNN with the gradient similarity regularization between the original and
augmented samples. As such, the decision behavior of the DNN is optimized,
avoiding the arbitrary neurons that are deleterious for the unseen samples, and
leading to the trained DNN that can be better generalized to
out-of-distribution samples. Extensive studies on various domain generalization
tasks based on both single and multiple domain(s) setting demonstrate the
effectiveness of our proposed approach compared with state-of-the-art baseline
methods. We also analyze our method by conducting visualization based on
network dissection. The results further provide useful evidence on the
rationality and effectiveness of our approach.
- Abstract(参考訳): 本稿では、ドメイン知識が利用できないドメイン一般化タスクに注目し、さらに悪いことに、1つのドメインからのサンプルのみをトレーニング中に利用することができる。
私たちの動機は、DNNのニューロンカバレッジの最大化がDNNの潜在的な欠陥(すなわち、誤分類)を探索するのに役立つことを示したディープニューラルネットワーク(DNN)テストの最近の進歩に由来します。
具体的には、DNNをプログラムとして扱い、各ニューロンをコードの機能点として扱うことにより、ネットワークトレーニングにおいて、DNNのニューロンカバレッジを元のサンプルと拡張サンプルとの勾配類似性規則化で最大化することにより、一般化能力の向上を目指す。
したがって、DNNの決定動作は最適化され、目に見えないサンプルに対して有害な任意のニューロンを避け、非分布サンプルにより良い一般化が可能な訓練されたDNNへと導かれる。
単一領域と複数領域の両方の設定に基づくドメイン一般化タスクの広範な研究は、最先端のベースライン手法と比較して提案手法の有効性を実証している。
また,ネットワーク分割に基づく可視化による解析も行う。
結果は、私たちのアプローチの合理性と有効性に関する有用な証拠をさらに提供します。
関連論文リスト
- Bayesian Neural Networks with Domain Knowledge Priors [52.80929437592308]
ドメイン知識の一般的な形式をBNNに組み込むためのフレームワークを提案する。
提案したドメイン知識を用いたBNNは,標準知識のBNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-20T22:34:53Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
我々は最近提案されたDPLLベースの制約DNN検証手法の拡張であるVeriStableを提案する。
完全接続型フィードネットワーク(FNN)、畳み込み型ニューラルネットワーク(CNN)、残留型ネットワーク(ResNet)など、さまざまな課題のあるベンチマークにおいてVeriStableの有効性を評価する。
予備的な結果は、VeriStableは、VNN-COMPの第1および第2のパフォーマーである$alpha$-$beta$-CROWNやMN-BaBなど、最先端の検証ツールよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-19T23:48:04Z) - SAfER: Layer-Level Sensitivity Assessment for Efficient and Robust
Neural Network Inference [20.564198591600647]
ディープニューラルネットワーク(DNN)は、ほとんどのコンピュータビジョンタスクにおいて優れたパフォーマンスを示す。
自律運転や医療画像などの重要な応用には、その行動の調査も必要である。
DNNの属性は、DNNの予測と入力の関係を研究することである。
論文 参考訳(メタデータ) (2023-08-09T07:45:51Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
スパイキングニューラルネットワーク(SNN)は、エネルギー効率と低レイテンシを含む、魅力的な潜在的な利点を提供する。
高性能SNNにとって有望な領域の1つは、テンプレートマッチングと画像認識である。
本研究では,視覚的位置認識(VPR)タスクのための最初の高性能SNNを紹介する。
論文 参考訳(メタデータ) (2021-09-14T05:40:40Z) - Optimizing Deep Neural Networks through Neuroevolution with Stochastic
Gradient Descent [18.70093247050813]
深部ニューラルネットワーク(DNN)の訓練における勾配降下(SGD)は優勢である
神経進化は進化過程に沿っており、しばしばSGDでは利用できない重要な機能を提供している。
個体群の多様性を改善するために,個体間の重み更新を克服する階層型クラスタ型抑制アルゴリズムも開発されている。
論文 参考訳(メタデータ) (2020-12-21T08:54:14Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
スパイキングニューラルネットワーク(SNN)は、符号化された時間信号で情報を検出するユニークな能力を持つ。
SNNをリカレントニューラルネットワーク(RNN)とみなす支配的アプローチのためのモデルとトレーニングアルゴリズムについてレビューする。
スパイキングニューロンの確率モデルに頼り、勾配推定による局所学習規則の導出を可能にする別のアプローチについて述べる。
論文 参考訳(メタデータ) (2020-10-27T11:47:42Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。