Algebraic Theory of Quantum Synchronization and Limit Cycles under
Dissipation
- URL: http://arxiv.org/abs/2103.01808v5
- Date: Tue, 11 Jan 2022 06:38:15 GMT
- Title: Algebraic Theory of Quantum Synchronization and Limit Cycles under
Dissipation
- Authors: Berislav Buca, Cameron Booker, Dieter Jaksch
- Abstract summary: Synchronization is a phenomenon where interacting particles lock their motion and display non-trivial dynamics.
We develop a general theory based on novel necessary and sufficient criteria for persistently oscillating eigenmodes.
We show these eigenmodes must be quantum coherent and give an exact analytical solution for all such dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synchronization is a phenomenon where interacting particles lock their motion
and display non-trivial dynamics. Despite intense efforts studying
synchronization in systems without clear classical limits, no comprehensive
theory has been found. We develop such a general theory based on novel
necessary and sufficient algebraic criteria for persistently oscillating
eigenmodes (limit cycles) of time-independent quantum master equations. We show
these eigenmodes must be quantum coherent and give an exact analytical solution
for all such dynamics in terms of a dynamical symmetry algebra. Using our
theory, we study both stable synchronization and metastable/transient
synchronization. We use our theory to fully characterise spontaneous
synchronization of autonomous systems. Moreover, we give compact algebraic
criteria that may be used to prove absence of synchronization. We demonstrate
synchronization in several systems relevant for various fermionic cold atom
experiments.
Related papers
- Quantum synchronization in an all-optical stroboscopic quantum simulator [1.8419202109872088]
We propose an all-optical stroboscopic scheme to simulate an open quantum system.
We find the emergence of spontaneous anti-phase synchronization in the steady state.
Our work provides a promising scheme for experimental studies focused on synchronization and other nonequilibrium steady states.
arXiv Detail & Related papers (2024-11-14T14:20:51Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Quantum simulation for time-dependent Hamiltonians -- with applications
to non-autonomous ordinary and partial differential equations [31.223649540164928]
We propose an alternative formalism that turns any non-autonomous unitary dynamical system into an autonomous unitary system.
This makes the simulation with time-dependent Hamiltonians not much more difficult than that of time-independent Hamiltonians.
We show how our new quantum protocol for time-dependent Hamiltonians can be performed in a resource-efficient way and without measurements.
arXiv Detail & Related papers (2023-12-05T14:59:23Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Measurement-Induced Quantum Synchronization and Multiplexing [0.0]
We formulate general criteria for this quantum phenomenon to occur, and demonstrate that the number of synchronized realizations can be controlled from none to all.
Measurement-induced synchronization appears as a genuine nonclassical form of synchrony that exploits quantum superpositions.
arXiv Detail & Related papers (2023-06-22T15:43:55Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Energetic cost for speedy synchronization in non-Hermitian quantum
dynamics [0.0]
We find the thermodynamic resources required for finite-time synchronization in continuous-variable systems to be extensive.
Compared to the classical limit, we find that quantum synchronization is slowed by the non-commutativity of the Hermitian and anti-Hermitian terms.
arXiv Detail & Related papers (2023-05-26T01:02:10Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Role of Coherence and Degeneracies in Quantum Synchronisation [0.0]
We study quantum synchronisation by utilising Liouville space perturbation theory.
We first clarify the role of centers, symmetries and oscillating coherences in the context of quantum synchronisation.
We then analyse the eigenspectrum of the Liouville superoperator generating the dynamics of the quantum system.
arXiv Detail & Related papers (2021-04-09T14:13:39Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.