Energetic cost for speedy synchronization in non-Hermitian quantum
dynamics
- URL: http://arxiv.org/abs/2305.16560v1
- Date: Fri, 26 May 2023 01:02:10 GMT
- Title: Energetic cost for speedy synchronization in non-Hermitian quantum
dynamics
- Authors: Maxwell Aifer and Juzar Thingna and Sebastian Deffner
- Abstract summary: We find the thermodynamic resources required for finite-time synchronization in continuous-variable systems to be extensive.
Compared to the classical limit, we find that quantum synchronization is slowed by the non-commutativity of the Hermitian and anti-Hermitian terms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum synchronization is crucial for understanding complex dynamics and
holds potential applications in quantum computing and communication. Therefore,
assessing the thermodynamic resources required for finite-time synchronization
in continuous-variable systems is a critical challenge. In the present work, we
find these resources to be extensive for large systems. We also bound the speed
of quantum and classical synchronization in coupled damped oscillators with
non-Hermitian anti-PT-symmetric interactions, and show that the speed of
synchronization is limited by the interaction strength relative to the damping.
Compared to the classical limit, we find that quantum synchronization is slowed
by the non-commutativity of the Hermitian and anti-Hermitian terms. Our general
results could be tested experimentally and we suggest an implementation in
photonic systems.
Related papers
- Quantum synchronization in one-dimensional topological systems [4.680781132156346]
Synchronization in quantum systems can be induced through applying dissipation on the central sites.
Two types of synchronization, stemming from the topological edge states, are characterized by the off-diagonal or diagonal correlations between the boundary sites.
Remarkably, the synchronous oscillations maintain steady amplitude and frequency in the thermodynamic limit.
arXiv Detail & Related papers (2024-09-19T09:03:09Z) - Investigating the Impact of Qubit Velocity on Quantum Synchronization Dynamics [1.1068280788997427]
We investigate the quantum synchronization dynamics of a moving qubit within a dissipative cavity environment.
We find that the qubit's velocity and detuning influence synchronization, offering potential pathways to enhance coherence in quantum systems.
arXiv Detail & Related papers (2024-09-02T19:16:16Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Measurement-Induced Quantum Synchronization and Multiplexing [0.0]
We formulate general criteria for this quantum phenomenon to occur, and demonstrate that the number of synchronized realizations can be controlled from none to all.
Measurement-induced synchronization appears as a genuine nonclassical form of synchrony that exploits quantum superpositions.
arXiv Detail & Related papers (2023-06-22T15:43:55Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Role of Coherence and Degeneracies in Quantum Synchronisation [0.0]
We study quantum synchronisation by utilising Liouville space perturbation theory.
We first clarify the role of centers, symmetries and oscillating coherences in the context of quantum synchronisation.
We then analyse the eigenspectrum of the Liouville superoperator generating the dynamics of the quantum system.
arXiv Detail & Related papers (2021-04-09T14:13:39Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Permutation Synchronization [88.4588059792167]
We present QuantumSync, the quantum algorithm for solving a quantum vision problem in the context of computer vision.
We show how to insert permutation constraints into a QUBO problem and to solve the constrained QUBO problem on the current generation of the abatic quantum DWave computer.
arXiv Detail & Related papers (2021-01-19T17:51:02Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.