An Analysis of Distributed Systems Syllabi With a Focus on
Performance-Related Topics
- URL: http://arxiv.org/abs/2103.01858v1
- Date: Tue, 2 Mar 2021 16:49:09 GMT
- Title: An Analysis of Distributed Systems Syllabi With a Focus on
Performance-Related Topics
- Authors: Cristina L. Abad and Alexandru Iosup and Edwin F. Boza and Eduardo
Ortiz-Holguin
- Abstract summary: We analyze a dataset of 51 current ( 2019-2020) Distributed Systems syllabi from top Computer Science programs.
We study the scale of the infrastructure mentioned in DS courses, from small client-server systems to cloud-scale, peer-to-peer, global-scale systems.
- Score: 65.86247008403002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze a dataset of 51 current (2019-2020) Distributed Systems syllabi
from top Computer Science programs, focusing on finding the prevalence and
context in which topics related to performance are being taught in these
courses. We also study the scale of the infrastructure mentioned in DS courses,
from small client-server systems to cloud-scale, peer-to-peer, global-scale
systems. We make eight main findings, covering goals such as performance, and
scalability and its variant elasticity; activities such as performance
benchmarking and monitoring; eight selected performance-enhancing techniques
(replication, caching, sharding, load balancing, scheduling, streaming,
migrating, and offloading); and control issues such as trade-offs that include
performance and performance variability.
Related papers
- Performance Modeling and Workload Analysis of Distributed Large Language Model Training and Inference [2.2231908139555734]
We propose a general performance modeling methodology and workload analysis of distributed LLM training and inference.
We validate our performance predictions with published data from literature and relevant industry vendors (e.g., NVIDIA)
arXiv Detail & Related papers (2024-07-19T19:49:05Z) - Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm [87.47506806135746]
In some applications, edge learning is experiencing a shift in focusing from conventional learning from scratch to new two-stage learning.
This paper considers the problem of joint communication and computation resource management in a two-stage edge learning system.
It is shown that the proposed joint resource management over the pre-training and fine-tuning stages well balances the system performance trade-off.
arXiv Detail & Related papers (2024-04-01T00:21:11Z) - MISS: Memory-efficient Instance Segmentation Framework By Visual Inductive Priors Flow Propagation [8.727456619750983]
The strategic integration of a visual prior into the training dataset emerges as a potential solution to enhance congruity with the testing data distribution.
Our empirical evaluations underscore the efficacy of MISS, demonstrating commendable performance in scenarios characterized by limited data availability and memory constraints.
arXiv Detail & Related papers (2024-03-18T08:52:23Z) - Deep Configuration Performance Learning: A Systematic Survey and Taxonomy [3.077531983369872]
We conduct a comprehensive review on the topic of deep learning for performance learning of software, covering 1,206 searched papers spanning six indexing services.
Our results outline key statistics, taxonomy, strengths, weaknesses, and optimal usage scenarios for techniques related to the preparation of configuration data.
We also identify the good practices and potentially problematic phenomena from the studies surveyed, together with a comprehensive summary of actionable suggestions and insights into future opportunities within the field.
arXiv Detail & Related papers (2024-03-05T21:05:16Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - MLPerfTM HPC: A Holistic Benchmark Suite for Scientific Machine Learning
on HPC Systems [32.621917787044396]
We introduceerf HPC, a benchmark suite of scientific machine learning training applications driven by the MLCommonsTM Association.
We develop a systematic framework for their joint analysis and compare them in terms of data staging, algorithmic convergence, and compute performance.
We conclude by characterizing each benchmark with respect to low-level memory, I/O, and network behavior.
arXiv Detail & Related papers (2021-10-21T20:30:12Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Machine Learning-based Orchestration of Containers: A Taxonomy and
Future Directions [25.763692543206773]
Existing mainstream cloud service providers have prevalently adopted container technologies in their distributed system infrastructures for automated application management.
To handle the automation of deployment, maintenance, autoscaling, and networking of containerized applications, container orchestration is proposed as an essential research problem.
In this paper, we present a comprehensive review of existing machine learning-based container orchestration approaches.
arXiv Detail & Related papers (2021-06-24T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.