論文の概要: Human-machine Interactive Tissue Prototype Learning for Label-efficient
Histopathology Image Segmentation
- arxiv url: http://arxiv.org/abs/2211.14491v1
- Date: Sat, 26 Nov 2022 06:17:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 18:04:33.881563
- Title: Human-machine Interactive Tissue Prototype Learning for Label-efficient
Histopathology Image Segmentation
- Title(参考訳): ラベル効率のよい組織像分割のための人機械対話型組織プロトタイプ学習
- Authors: Wentao Pan, Jiangpeng Yan, Hanbo Chen, Jiawei Yang, Zhe Xu, Xiu Li,
Jianhua Yao
- Abstract要約: ディープ・ニューラル・ネットワークは、画像セグメンテーションを大幅に進歩させたが、通常は豊富なデータを必要とする。
本稿では,ラベル効率のよい組織原型辞書構築パイプラインを提案し,得られた原型を用いて病理組織像のセグメンテーションを導くことを提案する。
人間の機械的対話型組織プロトタイプ学習法は,完全教師付きベースラインと同等のセグメンテーション性能が得られることを示す。
- 参考スコア(独自算出の注目度): 18.755759024796216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep neural networks have greatly advanced histopathology image
segmentation but usually require abundant annotated data. However, due to the
gigapixel scale of whole slide images and pathologists' heavy daily workload,
obtaining pixel-level labels for supervised learning in clinical practice is
often infeasible. Alternatively, weakly-supervised segmentation methods have
been explored with less laborious image-level labels, but their performance is
unsatisfactory due to the lack of dense supervision. Inspired by the recent
success of self-supervised learning methods, we present a label-efficient
tissue prototype dictionary building pipeline and propose to use the obtained
prototypes to guide histopathology image segmentation. Particularly, taking
advantage of self-supervised contrastive learning, an encoder is trained to
project the unlabeled histopathology image patches into a discriminative
embedding space where these patches are clustered to identify the tissue
prototypes by efficient pathologists' visual examination. Then, the encoder is
used to map the images into the embedding space and generate pixel-level pseudo
tissue masks by querying the tissue prototype dictionary. Finally, the pseudo
masks are used to train a segmentation network with dense supervision for
better performance. Experiments on two public datasets demonstrate that our
human-machine interactive tissue prototype learning method can achieve
comparable segmentation performance as the fully-supervised baselines with less
annotation burden and outperform other weakly-supervised methods. Codes will be
available upon publication.
- Abstract(参考訳): 近年,深層ニューラルネットワークは病理組織像の分節化に大きく進歩しているが,通常は豊富な注釈データを必要とする。
しかし,スライド画像全体のギガピクセルスケールや病理医の重度作業負荷のため,臨床実習における教師あり学習のためのピクセルレベルラベルの取得は不可能であることが多い。
あるいは、弱い教師付きセグメンテーション手法は、少ない画像レベルのラベルで検討されてきたが、密接な監督の欠如により、その性能は満足できない。
近年の自己教師付き学習手法の成功に触発されて,ラベル効率の高い組織プロトタイプ辞書作成パイプラインを提示し,得られたプロトタイプを用いて病理組織像のセグメンテーションを導くことを提案する。
特に、自己教師付きコントラスト学習を利用して、エンコーダは、ラベルのない病理組織像パッチを識別可能な埋め込み空間に投影し、それらのパッチをクラスタ化し、効率的な病理学者の視覚検査により組織プロトタイプを識別するように訓練される。
次に、エンコーダを用いて、画像を埋め込み空間にマッピングし、組織プロトタイプ辞書に問い合わせてピクセルレベルの擬似組織マスクを生成する。
最後に、擬似マスクを使用して、より優れたパフォーマンスのために密集した監視を行うセグメンテーションネットワークをトレーニングする。
2つの公開データセットの実験により、人間の機械的対話型組織プロトタイプ学習法は、アノテーション負担の少ない完全教師付きベースラインとして同等のセグメンテーション性能を達成でき、他の弱教師付きメソッドよりも優れていることが示された。
コードは出版時に入手できる。
関連論文リスト
- Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey [49.47197748663787]
本総説は, 半教師付きセマンティックセグメンテーション分野における擬似ラベル手法に関する最新の研究成果について, 包括的かつ組織的に概観することを目的としている。
さらに,医用およびリモートセンシング画像のセグメンテーションにおける擬似ラベル技術の適用について検討する。
論文 参考訳(メタデータ) (2024-03-04T10:18:38Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
論文 参考訳(メタデータ) (2023-09-11T14:32:04Z) - Unsupervised Dense Nuclei Detection and Segmentation with Prior
Self-activation Map For Histology Images [5.3882963853819845]
事前自己アクティベーションモジュール(PSM)を用いた自己教師型学習手法を提案する。
PSMは入力画像から自己活性化マップを生成し、ラベル付けコストを回避し、下流タスク用の擬似マスクを生成する。
他の完全教師付き・弱教師付き手法と比較して,本手法は手動アノテーションを使わずに競争性能を達成できる。
論文 参考訳(メタデータ) (2022-10-14T14:34:26Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
そこで我々はAuxSegNetと呼ばれる弱教師付きマルチタスク・フレームワークを提案し,サリエンシ検出とマルチラベル画像分類を補助タスクとして活用する。
同様の構造的セマンティクスに着想を得て,サリエンシとセグメンテーションの表現から,クロスタスクなグローバル画素レベルの親和性マップを学習することを提案する。
学習されたクロスタスク親和性は、両方のタスクに対して改善された擬似ラベルを提供するために、唾液度予測を洗練し、CAMマップを伝播するために使用することができる。
論文 参考訳(メタデータ) (2021-07-25T11:39:58Z) - Mixed Supervision Learning for Whole Slide Image Classification [88.31842052998319]
超高解像度画像のための混合監視学習フレームワークを提案する。
パッチトレーニングの段階では、このフレームワークは、粗いイメージレベルのラベルを使用して、自己教師付き学習を洗練することができる。
画素レベルの偽陽性と偽陰性を抑制するための包括的な戦略が提案されている。
論文 参考訳(メタデータ) (2021-07-02T09:46:06Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
限られたラベルを持つ医用画像セグメンテーションにおける半教師あり学習の性能向上を目指す。
我々は、ラベルのない画像に対照的な損失を与えることによって、特徴レベルで潜在表現を直接学習する。
我々はMRIとCTのセグメンテーションデータセットの実験を行い、提案手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-27T03:27:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Learning Whole-Slide Segmentation from Inexact and Incomplete Labels
using Tissue Graphs [11.315178576537768]
グラフを用いた弱教師付きセマンティックセグメンテーション手法であるSegGiniを提案する。
SegGiniセグメントは、組織マイクロアレイ(TMA)から全スライド画像(WSI)まで、任意かつ大規模な画像です。
論文 参考訳(メタデータ) (2021-03-04T16:04:24Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
組織像解析のための教師なし領域適応のための新しい手法を提案する。
特徴空間に画像を埋め込むバックボーンと、ラベルで画像の監視信号をプロパゲートするグラフニューラルネットワーク層に基づいている。
実験では、4つの公開データセット上での最先端のパフォーマンスを評価する。
論文 参考訳(メタデータ) (2020-08-21T04:53:44Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。