論文の概要: Morphset:Augmenting categorical emotion datasets with dimensional affect
labels using face morphing
- arxiv url: http://arxiv.org/abs/2103.02854v1
- Date: Thu, 4 Mar 2021 06:33:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-05 15:09:23.869430
- Title: Morphset:Augmenting categorical emotion datasets with dimensional affect
labels using face morphing
- Title(参考訳): Morphset:フェースモーフィングを用いたディメンショナル・インパクト・ラベルを用いたカテゴリー別感情データセットの拡張
- Authors: Vassilios Vonikakis, Dexter Neo, Stefan Winkler
- Abstract要約: フェースモーフィングを用いた既存のカテゴリー感情データセットから合成画像を生成する手法を提案する。
この方法は少なくとも20倍以上の増強係数を達成する。
- 参考スコア(独自算出の注目度): 3.8558530661279224
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Emotion recognition and understanding is a vital componentin human-machine
interaction. Dimensional models of affectsuch as those using valence and
arousal have advantages overtraditional categorical ones due to the complexity
of emo-tional states in humans. However, dimensional emotion an-notations are
difficult and expensive to collect, therefore theyare still limited in the
affective computing community. To ad-dress these issues, we propose a method to
generate syntheticimages from existing categorical emotion datasets using
facemorphing, with full control over the resulting sample distri-bution as well
as dimensional labels in the circumplex space,while achieving augmentation
factors of at least 20x or more.
- Abstract(参考訳): 感情認識と理解は人間と機械の相互作用において重要な要素である。
原子価と覚醒を用いた影響の次元モデルは、人間のエモ・オプション状態の複雑さのために伝統的なカテゴリーよりも有利である。
しかし、次元的な感情アノテーションは収集が困難でコストがかかるため、それでも感情的なコンピューティングコミュニティでは限られている。
そこで本論文では,これらの課題を補うために,得られたサンプルのディトリブチオンと円周空間の次元ラベルを完全に制御し,少なくとも20倍以上の増分係数を達成したまま,既存のカテゴリー的感情データセットから合成画像を生成する手法を提案する。
関連論文リスト
- AffectNet+: A Database for Enhancing Facial Expression Recognition with Soft-Labels [2.644902054473556]
画像に複数の感情をラベル付けするラベル付け手法により、FERデータセットを作成するための新しい手法を提案する。
提案手法の利点は, よりスムーズな決定境界の発見, マルチラベル化の実現, バイアスと不均衡データの緩和などにある。
AffectNetをベースとして,次世代の表情データセットであるAffectNet+を紹介する。
論文 参考訳(メタデータ) (2024-10-29T19:57:10Z) - Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification [37.823815777259036]
テキストから感情を分類する手法を導入し,様々な感情の相違点と相違点を認識・区別する。
提案手法は感情予測において高い精度を保ちながら,誤分類の場合の誤りの程度を著しく低減する。
論文 参考訳(メタデータ) (2024-04-02T10:06:30Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Implicit Design Choices and Their Impact on Emotion Recognition Model
Development and Evaluation [5.534160116442057]
感情の主観性は、正確で堅牢な計算モデルを開発する上で大きな課題を生じさせる。
この論文は、多様なデータセットの収集から始まる感情認識の批判的な側面を調べる。
非表現的トレーニングデータの課題に対処するため、この研究はマルチモーダルストレス感情データセットを収集する。
論文 参考訳(メタデータ) (2023-09-06T02:45:42Z) - A cross-corpus study on speech emotion recognition [29.582678406878568]
本研究では,行動感情から学習した情報が,自然感情の検出に有用かどうかを検討する。
成人英語の4つのデータセットは、行動的、誘惑的、自然な感情をカバーしている。
性能劣化を正確に調査するための最先端モデルを提案する。
論文 参考訳(メタデータ) (2022-07-05T15:15:22Z) - Affect-DML: Context-Aware One-Shot Recognition of Human Affect using
Deep Metric Learning [29.262204241732565]
既存の方法は、すべての関心の感情に注釈付きトレーニングの例として優先順位が与えられると仮定している。
我々は、文脈における感情のワンショット認識を概念化し、単一のサポートサンプルからより細かい粒子レベルの人間の影響状態を認識することを目的とした新しい問題である。
モデルの全変種は、ランダムなベースラインよりも明らかに優れており、セマンティックシーンのコンテキストを活用することで、学習された表現を一貫して改善している。
論文 参考訳(メタデータ) (2021-11-30T10:35:20Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
深層生成モデルは、自動表情編集の分野で素晴らしい成果を上げている。
連続した2次元の感情ラベルに従って顔画像の表情を操作できるモデルを提案する。
論文 参考訳(メタデータ) (2020-06-22T13:03:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。