論文の概要: Nishimori meets Bethe: a spectral method for node classification in
sparse weighted graphs
- arxiv url: http://arxiv.org/abs/2103.03561v1
- Date: Fri, 5 Mar 2021 09:45:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 00:44:16.109648
- Title: Nishimori meets Bethe: a spectral method for node classification in
sparse weighted graphs
- Title(参考訳): 西森はBetheに会う:スパース重み付きグラフにおけるノード分類のスペクトル法
- Authors: Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay
- Abstract要約: 本稿では,分布pをパラメトリ化する西森温度と,分布pに従ってエッジ重みが分布するランダムエルドス・レーニーグラフ上のベーテ自由エネルギーの関係について述べる。
重み付きグラフのBethe Hessian行列の固有値から西森温度を正確に推定する数値計算法を提案する。
- 参考スコア(独自算出の注目度): 53.13327158427103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article unveils a new relation between the Nishimori temperature
parametrizing a distribution P and the Bethe free energy on random Erdos-Renyi
graphs with edge weights distributed according to P. Estimating the Nishimori
temperature being a task of major importance in Bayesian inference problems, as
a practical corollary of this new relation, a numerical method is proposed to
accurately estimate the Nishimori temperature from the eigenvalues of the Bethe
Hessian matrix of the weighted graph. The algorithm, in turn, is used to
propose a new spectral method for node classification in weighted (possibly
sparse) graphs. The superiority of the method over competing state-of-the-art
approaches is demonstrated both through theoretical arguments and real-world
data experiments.
- Abstract(参考訳): This article unveils a new relation between the Nishimori temperature parametrizing a distribution P and the Bethe free energy on random Erdos-Renyi graphs with edge weights distributed according to P. Estimating the Nishimori temperature being a task of major importance in Bayesian inference problems, as a practical corollary of this new relation, a numerical method is proposed to accurately estimate the Nishimori temperature from the eigenvalues of the Bethe Hessian matrix of the weighted graph.
このアルゴリズムは、重み付きグラフ(おそらくスパース)におけるノード分類の新しいスペクトル法を提案するのに用いられる。
競合する最先端のアプローチに対する方法の優位性は、理論的な議論と実世界のデータ実験の両方によって示されています。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Information-Theoretic Thresholds for Planted Dense Cycles [52.076657911275525]
本研究では,社会科学や生物科学においてユビキタスな小世界ネットワークのランダムグラフモデルについて検討する。
植え込み高密度サイクルの検出と回復の両面において、情報理論の閾値を$n$, $tau$、エッジワイド信号対雑音比$lambda$で特徴づける。
論文 参考訳(メタデータ) (2024-02-01T03:39:01Z) - Bayesian Metric Learning for Uncertainty Quantification in Image
Retrieval [0.7646713951724012]
距離学習のための最初のベイズエンコーダを提案する。
ネットワーク重みに関する分布をLaplace Approximationで学習する。
我々は,Laplacian Metric Learner (LAM) がよく校正された不確かさを推定し,分布外例を確実に検出し,最先端の予測性能を得ることを示す。
論文 参考訳(メタデータ) (2023-02-02T18:59:23Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Generative Learning With Euler Particle Transport [14.557451744544592]
生成学習のためのユーラー粒子輸送(EPT)手法を提案する。
提案手法は, 基準分布から目標分布への最適輸送マップの探索の問題に動機付けられている。
提案する密度比(差分)推定器は,データが低次元多様体上で支持されている場合,「次元の曲線」に支障を来さないことを示す。
論文 参考訳(メタデータ) (2020-12-11T03:10:53Z) - Learning Representations using Spectral-Biased Random Walks on Graphs [18.369974607582584]
このプロセスにおける確率バイアスが、プロセスによって選択されたノードの品質にどの程度影響するかを調査する。
我々は、この近傍を正規化ラプラス行列として表されるノードの近傍部分グラフのスペクトルに基づく確率測度として簡潔に捉えた。
我々は,様々な実世界のデータセット上で,最先端ノード埋め込み技術に対する我々のアプローチを実証的に評価した。
論文 参考訳(メタデータ) (2020-05-19T20:42:43Z) - Generalized Gumbel-Softmax Gradient Estimator for Various Discrete
Random Variables [16.643346012854156]
ノードの勾配を評価することは、深層生成モデリングコミュニティにおいて重要な研究課題の1つである。
本稿では,連続緩和を伴うGumbel-Softmax推定器の一般バージョンを提案する。
論文 参考訳(メタデータ) (2020-03-04T01:13:15Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z) - Statistical Analysis and Information Theory of Screened Kratzer-Hellmann
Potential Model [0.0]
新たに提案されたクラッツァー・ヘルマンポテンシャルモデルに対するラジアルシュロディンガー方程式について検討した。
検層されたクラッツァー・ヘルマンポテンシャルの回転振動分割関数およびその他の熱力学特性を評価するために, 実験結果を用いた。
論文 参考訳(メタデータ) (2020-01-23T10:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。