論文の概要: Episodic memory governs choices: An RNN-based reinforcement learning
model for decision-making task
- arxiv url: http://arxiv.org/abs/2103.03679v1
- Date: Sun, 24 Jan 2021 04:33:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 09:09:16.873109
- Title: Episodic memory governs choices: An RNN-based reinforcement learning
model for decision-making task
- Title(参考訳): エピソード記憶は選択を支配する:意思決定タスクのためのRNNベースの強化学習モデル
- Authors: Xiaohan Zhang, Lu Liu, Guodong Long, Jing Jiang, Shenquan Liu
- Abstract要約: RNNベースのActor-Criticフレームワークを開発し、サルの意思決定タスクに類似した2つのタスクを解決します。
私たちは、神経科学のオープンな質問を探ろうとしています:海馬のエピソード記憶は、最終的に将来の決定を支配するために選択されるべきです。
- 参考スコア(独自算出の注目度): 24.96447960548042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Typical methods to study cognitive function are to record the electrical
activities of animal neurons during the training of animals performing
behavioral tasks. A key problem is that they fail to record all the relevant
neurons in the animal brain. To alleviate this problem, we develop an RNN-based
Actor-Critic framework, which is trained through reinforcement learning (RL) to
solve two tasks analogous to the monkeys' decision-making tasks. The trained
model is capable of reproducing some features of neural activities recorded
from animal brain, or some behavior properties exhibited in animal experiments,
suggesting that it can serve as a computational platform to explore other
cognitive functions. Furthermore, we conduct behavioral experiments on our
framework, trying to explore an open question in neuroscience: which episodic
memory in the hippocampus should be selected to ultimately govern future
decisions. We find that the retrieval of salient events sampled from episodic
memories can effectively shorten deliberation time than common events in the
decision-making process. The results indicate that salient events stored in the
hippocampus could be prioritized to propagate reward information, and thus
allow decision-makers to learn a strategy faster.
- Abstract(参考訳): 認知機能を研究する典型的な方法は、行動タスクを行う動物の訓練中の動物のニューロンの電気活動を記録することである。
重要な問題は、彼らは動物の脳内のすべての関連ニューロンを記録できないことです。
この問題を解決するために,強化学習(rl)によって学習し,サルの意思決定タスクに類似した2つの課題を解決するrnnベースのアクタ-クリティックフレームワークを開発した。
訓練されたモデルは、動物の脳から記録された神経活動のいくつかの特徴、または動物実験で示された行動特性を再現することができ、他の認知機能を調べるための計算プラットフォームとして機能することを示唆している。
さらに、我々は神経科学におけるオープンな疑問を探究するために、行動実験を行い、海馬のエピソディクス記憶を選択すべきかどうかを究極的に決定する。
エピソード記憶から抽出された有意な事象の検索は、意思決定プロセスにおける一般的な出来事よりも審議時間を効果的に短縮できることが判明した。
以上の結果から,海馬に蓄積された有能なイベントを優先して報奨情報を伝達し,意思決定者がより早く戦略を学習できることが示唆された。
関連論文リスト
- Memory-Augmented Theory of Mind Network [59.9781556714202]
社会的推論は、心の理論(ToM)の能力を必要とする。
ToMに対する最近の機械学習アプローチは、観察者が過去を読み、他のエージェントの振る舞いを提示するように訓練できることを実証している。
我々は,新たなニューラルメモリ機構を組み込んで符号化し,階層的な注意を払って他者に関する情報を選択的に検索することで,課題に対処する。
この結果、ToMMYは心的プロセスについての仮定をほとんど行わずに理性を学ぶマインドモデルである。
論文 参考訳(メタデータ) (2023-01-17T14:48:58Z) - Continual task learning in natural and artificial agents [4.726777092009554]
脳記録研究の波は、タスク学習中に神経表現がどのように変化するかを調査している。
ニューロコルテックスにおけるニューラルタスク表現の幾何学と次元性について検討した最近の研究を概観する。
機械学習のアイデアは、神経科学者が生物の脳の中でどのように自然のタスクが学習され、コードされるかを理解するのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2022-10-10T09:36:08Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
既存のfMRIベースの脳デコードのための機械学習手法は、分類性能が低いか、説明性が悪いかのいずれかに悩まされている。
本稿では,機能的脳活動の時空間グラフ表現を捉えるために,生物学的にインスパイアされたアーキテクチャである時空間ピラミドグラフ畳み込みネットワーク(STpGCN)を提案する。
我々は,Human Connectome Project (HCP) S1200から23の認知タスク下でのfMRIデータに関する広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-08T12:14:33Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - A bio-inspired implementation of a sparse-learning spike-based
hippocampus memory model [0.0]
本研究では,海馬に基づくバイオインスパイアされた新しい記憶モデルを提案する。
記憶を覚えたり、キューから思い出したり、同じキューで他の人を学ぼうとする時の記憶を忘れたりできる。
この研究は、完全に機能するバイオインスパイアされたスパイクベースの海馬記憶モデルの最初のハードウェア実装を示す。
論文 参考訳(メタデータ) (2022-06-10T07:48:29Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
我々は、-CycleGANと呼ばれる深層生成モデルを用いて、前学習と後学習の神経活動の間の未知のマッピングを学習する。
我々は,カルシウム蛍光信号を前処理し,訓練し,評価するためのエンドツーエンドパイプラインを開発し,その結果の深層学習モデルを解釈する手法を開発した。
論文 参考訳(メタデータ) (2021-11-25T13:24:19Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
記憶の神経機構は、人工知能における表現の問題と非常に密接な関係を持っている。
脳内のニューロンのネットワークとその情報処理のシミュレーションを行う計算モデルが提案された。
論文 参考訳(メタデータ) (2020-11-27T01:34:08Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z) - Towards Efficient Processing and Learning with Spikes: New Approaches
for Multi-Spike Learning [59.249322621035056]
各種タスクにおける他のベースラインよりも優れた性能を示すための2つの新しいマルチスパイク学習ルールを提案する。
特徴検出タスクでは、教師なしSTDPの能力と、その制限を提示する能力を再検討する。
提案した学習ルールは,特定の制約を適用せずに,幅広い条件で確実にタスクを解くことができる。
論文 参考訳(メタデータ) (2020-05-02T06:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。