論文の概要: Fully Convolutional Geometric Features for Category-level Object
Alignment
- arxiv url: http://arxiv.org/abs/2103.04494v1
- Date: Mon, 8 Mar 2021 00:31:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 15:19:52.065509
- Title: Fully Convolutional Geometric Features for Category-level Object
Alignment
- Title(参考訳): カテゴリーレベルオブジェクトアライメントのための完全畳み込み幾何学的特徴
- Authors: Qiaojun Feng, Nikolay Atanasov
- Abstract要約: 本稿では,同じカテゴリの異なるオブジェクトインスタンスのポーズ登録に焦点を当てる。
提案手法は,同じカテゴリのインスタンスを正規化された標準座標フレームに変換し,計量学習を用いて完全な畳み込み幾何学的特徴を訓練する。
- 参考スコア(独自算出の注目度): 12.741811850885309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on pose registration of different object instances from
the same category. This is required in online object mapping because object
instances detected at test time usually differ from the training instances. Our
approach transforms instances of the same category to a normalized canonical
coordinate frame and uses metric learning to train fully convolutional
geometric features. The resulting model is able to generate pairs of matching
points between the instances, allowing category-level registration. Evaluation
on both synthetic and real-world data shows that our method provides robust
features, leading to accurate alignment of instances with different shapes.
- Abstract(参考訳): 本稿では,同じカテゴリの異なるオブジェクトインスタンスのポーズ登録に焦点を当てる。
テスト時に検出されるオブジェクトインスタンスは通常、トレーニングインスタンスとは異なるため、これはオンラインオブジェクトマッピングで必要となる。
提案手法は,同じカテゴリのインスタンスを正規化された標準座標フレームに変換し,計量学習を用いて完全な畳み込み幾何学的特徴を訓練する。
結果として得られたモデルは、インスタンス間のマッチングポイントのペアを生成することができ、カテゴリレベルの登録が可能になる。
合成データと実世界の両方のデータから,本手法が頑健な特徴を提供し,異なる形状のインスタンスの正確なアライメントを実現することを示す。
関連論文リスト
- Instance-Adaptive and Geometric-Aware Keypoint Learning for Category-Level 6D Object Pose Estimation [38.03793706479096]
カテゴリーレベルの6Dオブジェクトのポーズ推定は、特定のカテゴリ内の見えないインスタンスの回転、翻訳、サイズを推定することを目的としている。
カテゴリレベルの6次元オブジェクトポーズ推定(AG-Pose)のための新しいインスタンス適応型および幾何学的キーポイント学習法を提案する。
提案した AG-Pose は、カテゴリー固有の形状の先行を伴わず、最先端の手法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2024-03-28T16:02:03Z) - Not All Instances Contribute Equally: Instance-adaptive Class
Representation Learning for Few-Shot Visual Recognition [94.04041301504567]
少数ショットの視覚認識は、いくつかのラベル付きインスタンスから新しい視覚概念を認識することを指す。
本稿では,数ショットの視覚認識を実現するために,インスタンス適応型クラス表現学習ネットワーク(ICRL-Net)と呼ばれる新しいメトリックベースのメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-07T10:00:18Z) - Learning to Complete Object Shapes for Object-level Mapping in Dynamic
Scenes [30.500198859451434]
本研究では,動的シーンにおけるオブジェクトの分割,追跡,再構築を同時に行うオブジェクトレベルのマッピングシステムを提案する。
さらに、深度入力とカテゴリレベルの前の形状からの再構成を条件にすることで、完全なジオメトリを予測し、完成させることができる。
実世界の合成シーケンスと実世界のシーケンスの両方で定量的に定性的にテストすることで,その有効性を評価する。
論文 参考訳(メタデータ) (2022-08-09T22:56:33Z) - On Hyperbolic Embeddings in 2D Object Detection [76.12912000278322]
双曲幾何学が対象分類空間の基盤構造に適合するかどうかを考察する。
2段階、キーポイントベース、トランスフォーマーベースオブジェクト検出アーキテクチャに双曲型分類器を組み込む。
分類空間の構造に現れる分類階級階層を観察し、分類誤差を低くし、全体的な対象検出性能を高める。
論文 参考訳(メタデータ) (2022-03-15T16:43:40Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
形状空間学習に対称性を組み込む自然な方法は、形状空間(エンコーダ)への写像と形状空間(デコーダ)からの写像が関連する対称性に同値であることを問うことである。
本稿では,2つのコントリビューションを導入することで,エンコーダとデコーダの等価性を組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-03T06:41:19Z) - Discovering Relationships between Object Categories via Universal
Canonical Maps [80.07703460198198]
変形可能なオブジェクトの複数カテゴリの幾何学を共同で学習する問題に取り組む。
近年の研究では、関連オブジェクトのいくつかのカテゴリに対して、統合された高密度ポーズ予測器を学習できることが示されている。
改良された対応性は,カテゴリ固有の高密度ポーズ予測器の自然な副産物として自動的に学習できることを示す。
論文 参考訳(メタデータ) (2021-06-17T18:38:18Z) - I^3Net: Implicit Instance-Invariant Network for Adapting One-Stage
Object Detectors [64.93963042395976]
暗黙のInstance-Invariant Network(I3Net)は、ワンステージ検出器の適応に適しています。
i3netは、異なる層における深い特徴の自然な特徴を利用してインスタンス不変な特徴を暗黙的に学習する。
実験によると、I3Netはベンチマークデータセットの最先端のパフォーマンスを上回っている。
論文 参考訳(メタデータ) (2021-03-25T11:14:36Z) - CORSAIR: Convolutional Object Retrieval and Symmetry-AIded Registration [14.79639149658596]
完全畳み込みオブジェクト検索とシンメトリーエイド登録の開発とアプローチを行います。
提案手法のロバスト性を検証するために,異なるオブジェクトカテゴリの合成データと実世界のデータセットの結果を示す。
論文 参考訳(メタデータ) (2021-03-11T19:12:48Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
独立オブジェクトの2次元画像の集合から学習できる共通オブジェクトカテゴリの3次元形状の表現を提案する。
提案手法は, パラメトリック変形モデル, 非パラメトリック3次元再構成, 標準埋め込みの概念に基づく新しい手法で構築する。
顔、車、鳥の野生のデータセットを3Dで再現することで、最先端の成果が得られます。
論文 参考訳(メタデータ) (2020-08-28T15:44:05Z) - OS2D: One-Stage One-Shot Object Detection by Matching Anchor Features [14.115782214599015]
ワンショットオブジェクト検出は、単一のデモによって定義されたオブジェクトを検出することで構成される。
ローカライズと認識を共同で行うワンステージシステムを構築している。
いくつかの挑戦的領域に対する実験的評価は,本手法が未知のクラスを検出できることを示唆している。
論文 参考訳(メタデータ) (2020-03-15T11:39:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。