論文の概要: Maximum Likelihood Estimation for Hawkes Processes with self-excitation
or inhibition
- arxiv url: http://arxiv.org/abs/2103.05299v1
- Date: Tue, 9 Mar 2021 08:56:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-10 14:44:04.453976
- Title: Maximum Likelihood Estimation for Hawkes Processes with self-excitation
or inhibition
- Title(参考訳): 自励・抑制を伴うホークス過程の最大確率推定
- Authors: Anna Bonnet (LPSM), Miguel Herrera (LPSM), Maxime Sangnier (LPSM)
- Abstract要約: 提案された推定器は古典指数核に対して実装される。
抑制の文脈では,提案手法は現在の代替手法よりも精度の高い推定方法を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a maximum likelihood method for estimating the
parameters of a univariate Hawkes process with self-excitation or inhibition.
Our work generalizes techniques and results that were restricted to the
self-exciting scenario. The proposed estimator is implemented for the classical
exponential kernel and we show that, in the inhibition context, our procedure
provides more accurate estimations than current alternative approaches.
- Abstract(参考訳): 本稿では,単変量ホークス過程のパラメータを自己励磁や抑制によって推定する最大推定法を提案する。
我々の研究は、自己励ましのシナリオに制限されたテクニックと結果を一般化する。
提案手法は,古典的指数関数カーネルに対して実装され,抑制条件下では,現在の代替手法よりも高精度な推定が可能であることを示す。
関連論文リスト
- Preferential Normalizing Flows [9.073645394501082]
ノイズの多い判断によって専門家から高次元の確率分布を除外することは、非常に難しいが、多くのアプリケーションにとって有用である。
本稿では,主観的質問のみに基づく正規化フローとして,専門家の信念密度を抽出する手法を提案する。
本研究では, 信念密度を関数空間最大値として推定できることを示す。
論文 参考訳(メタデータ) (2024-10-11T10:53:38Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Likelihood-based inference and forecasting for trawl processes: a
stochastic optimization approach [0.0]
実数値トロール過程を推定するための第1の可能性に基づく手法を開発した。
本稿では,新しい決定的および確率的予測手法を提案する。
トロールプロセスの大規模なクラスに適合するために使用可能なPythonライブラリをリリースしています。
論文 参考訳(メタデータ) (2023-08-30T15:37:48Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
割引平均推定問題に対して最小値の最小値を求める。
マルコフ過程の割引されたカーネルから直接サンプリングすることで平均を推定すると、説得力のある統計的性質が得られることを示す。
論文 参考訳(メタデータ) (2023-04-11T09:13:17Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Open-Set Likelihood Maximization for Few-Shot Learning [36.97433312193586]
我々はFew-Shot Open-Set Recognition (FSOSR) 問題、すなわちいくつかのラベル付きサンプルしか持たないクラスのインスタンスを分類する問題に取り組む。
提案手法では,推論時に非競合なクエリインスタンスを利用する。
既存のトランスダクティブ手法はオープンセットのシナリオではうまく動作しないという観測により,最大極大原理の一般化を提案する。
論文 参考訳(メタデータ) (2023-01-20T01:56:19Z) - Doubly Robust Counterfactual Classification [1.8907108368038217]
本研究では,仮説的(事実とは対照的に)なシナリオ下での意思決定のための新しいツールとして,カウンターファクトの分類について検討する。
本稿では, 一般対物分類器のための2次ロバストな非パラメトリック推定器を提案する。
論文 参考訳(メタデータ) (2023-01-15T22:04:46Z) - Information-Theoretic Safe Exploration with Gaussian Processes [89.31922008981735]
未知の(安全でない)制約に反するパラメータを評価できないような、逐次的な意思決定タスクについて検討する。
現在のほとんどのメソッドはドメインの離散化に依存しており、連続ケースに直接拡張することはできない。
本稿では,GP後部を直接利用して,最も情報に富む安全なパラメータを識別する情報理論的安全な探索基準を提案する。
論文 参考訳(メタデータ) (2022-12-09T15:23:58Z) - Black-box Off-policy Estimation for Infinite-Horizon Reinforcement
Learning [26.880437279977155]
医療やロボティクスといった多くの現実的な応用において、長期的問題に対するオフ・ポリティクス推定が重要である。
政治外データの収集方法を知らずに定常分布の重要度を算出する新しい推定器を開発した。
論文 参考訳(メタデータ) (2020-03-24T21:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。