論文の概要: Preferential Normalizing Flows
- arxiv url: http://arxiv.org/abs/2410.08710v2
- Date: Wed, 16 Oct 2024 17:06:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:25:15.586713
- Title: Preferential Normalizing Flows
- Title(参考訳): 優先正規化流れ
- Authors: Petrus Mikkola, Luigi Acerbi, Arto Klami,
- Abstract要約: ノイズの多い判断によって専門家から高次元の確率分布を除外することは、非常に難しいが、多くのアプリケーションにとって有用である。
本稿では,主観的質問のみに基づく正規化フローとして,専門家の信念密度を抽出する手法を提案する。
本研究では, 信念密度を関数空間最大値として推定できることを示す。
- 参考スコア(独自算出の注目度): 9.073645394501082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Eliciting a high-dimensional probability distribution from an expert via noisy judgments is notoriously challenging, yet useful for many applications, such as prior elicitation and reward modeling. We introduce a method for eliciting the expert's belief density as a normalizing flow based solely on preferential questions such as comparing or ranking alternatives. This allows eliciting in principle arbitrarily flexible densities, but flow estimation is susceptible to the challenge of collapsing or diverging probability mass that makes it difficult in practice. We tackle this problem by introducing a novel functional prior for the flow, motivated by a decision-theoretic argument, and show empirically that the belief density can be inferred as the function-space maximum a posteriori estimate. We demonstrate our method by eliciting multivariate belief densities of simulated experts, including the prior belief of a general-purpose large language model over a real-world dataset.
- Abstract(参考訳): ノイズの多い判断によって専門家から高次元の確率分布を除外することは、非常に難しいが、事前の推論や報酬モデリングのような多くの応用には有用である。
本稿では,専門家の信念密度を,比較やランキングなどの優先的な質問のみに基づく正規化フローとして抽出する手法を提案する。
これは原則として任意にフレキシブルな密度を導出することを可能にするが、流れの推定は、実際に困難となる確率質量の崩壊やばらつきの挑戦に影響を受けやすい。
本稿では,フローに対する新しい関数前処理を導入することでこの問題に対処する。これは決定理論の議論によって動機づけられたものであり,その信念密度を関数空間の最大値として推定できることを実証的に示す。
本手法は,実世界のデータセット上での汎用大規模言語モデルの事前の信念を含む,シミュレーション専門家の多変量信念の密度を抽出することによって実証する。
関連論文リスト
- Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows [10.153270126742369]
正規化定数を含む確率分布の効率的な近似サンプリングについて検討した。
具体的には,科学技術応用における大規模逆問題に対するベイズ推定における問題クラスに着目する。
論文 参考訳(メタデータ) (2024-06-25T04:07:22Z) - On Subjective Uncertainty Quantification and Calibration in Natural Language Generation [2.622066970118316]
大規模言語モデルは多くの場合、不確実な定量化が困難になるような自由形式の応答を生成する。
この研究はベイズ決定論の観点からこれらの課題に対処する。
本稿では,モデルの主観的不確実性とそのキャリブレーションを原理的に定量化する方法について論じる。
提案手法はブラックボックス言語モデルに適用できる。
論文 参考訳(メタデータ) (2024-06-07T18:54:40Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Robust probabilistic inference via a constrained transport metric [8.85031165304586]
我々は、パラメトリックな分布の族の近くに集中するように慎重に設計された指数関数的に傾いた経験的確に構築することで、新しい代替手段を提供する。
提案手法は,多種多様なロバストな推論問題に応用し,中心分布に付随するパラメータを推論する。
我々は,最先端の頑健なベイズ推論手法と比較した場合,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-03-17T16:10:06Z) - Simplified Continuous High Dimensional Belief Space Planning with
Adaptive Probabilistic Belief-dependent Constraints [9.061408029414453]
部分的に観測可能な領域における不確実性、あるいはBelief Space Planningとしても知られる場合、オンライン意思決定は根本的な問題である。
本稿では,確率論的信念に依存した制約に対して,適応的に行動列を受理あるいは破棄する手法を提案する。
本手法を高次元空間計画の課題であるアクティブSLAMに適用する。
論文 参考訳(メタデータ) (2023-02-13T21:22:47Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Modal Uncertainty Estimation via Discrete Latent Representation [4.246061945756033]
本稿では,インプットとアウトプットの1対1マッピングを,忠実な不確実性対策とともに学習するディープラーニングフレームワークを提案する。
我々のフレームワークは、現在の最先端手法よりもはるかに正確な不確実性推定を実証している。
論文 参考訳(メタデータ) (2020-07-25T05:29:34Z) - Composing Normalizing Flows for Inverse Problems [89.06155049265641]
本稿では,2つの流れモデルの合成として,対象条件を推定する近似推論フレームワークを提案する。
本手法は,様々な逆問題に対して評価し,不確実性のある高品質な試料を作製することを示した。
論文 参考訳(メタデータ) (2020-02-26T19:01:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。