論文の概要: Symmetry meets AI
- arxiv url: http://arxiv.org/abs/2103.06115v1
- Date: Wed, 10 Mar 2021 15:12:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-11 19:42:29.519910
- Title: Symmetry meets AI
- Title(参考訳): 対称性とAI
- Authors: Gabriela Barenboim, Johannes Hirn and Veronica Sanz
- Abstract要約: ニューラルネットワーク(NN)が,タスクの実行を学ぶ際に,対称性の存在を発見できるかどうかを探索する。
これらのNNの最後の隠蔽層からの出力を、対称性分類タスクの入力として、より少ない次元に投影する。
我々はピカソ、ポロック、ヴァン・ゴッホといった異なる様式の芸術絵画における対称性の存在と水準を識別する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore whether Neural Networks (NNs) can {\it discover} the presence of
symmetries as they learn to perform a task. For this, we train hundreds of NNs
on a {\it decoy task} based on well-controlled Physics templates, where no
information on symmetry is provided. We use the output from the last hidden
layer of all these NNs, projected to fewer dimensions, as the input for a
symmetry classification task, and show that information on symmetry had indeed
been identified by the original NN without guidance. As an interdisciplinary
application of this procedure, we identify the presence and level of symmetry
in artistic paintings from different styles such as those of Picasso, Pollock
and Van Gogh.
- Abstract(参考訳): ニューラルネットワーク(NN)が、タスクの実行を学ぶ際に対称性の存在を発見できるかどうかを探索する。
このため、適切に制御された物理テンプレートに基づいて数百個のNNを訓練し、対称性の情報は提供されない。
これらのNNの最後に隠された層からの出力を対称性分類タスクの入力として、より少ない次元に投影し、対称性に関する情報が誘導なしで元のNNによって識別されたことを示す。
この手順の学際的な適用として、我々はピカソ、ポロック、ヴァンゴッホなどの異なるスタイルの芸術絵画における対称性の存在とレベルを特定します。
関連論文リスト
- Robust Symmetry Detection via Riemannian Langevin Dynamics [39.342336146118015]
本稿では, 従来の対称性検出技術と, 生成モデリングの最近の進歩を融合した新しい対称性検出手法を提案する。
具体的には、騒音に対するロバスト性を高めるために、対称性空間にランゲヴィン力学を適用する。
提案手法は雑音に対して頑健であるだけでなく,部分対称性と大域対称性の両方を識別できることを示す様々な形状に関する実験結果を提供する。
論文 参考訳(メタデータ) (2024-09-18T02:28:20Z) - The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
ニューラル・ネットワーク・アーキテクチャの導入により,ニューラル・パラメータ・対称性の影響について検討する。
我々は,パラメータ空間対称性を低減するために,標準的なニューラルネットワークを改良する2つの手法を開発した。
実験により,パラメータ対称性の経験的影響に関する興味深い観察がいくつか示された。
論文 参考訳(メタデータ) (2024-05-30T16:32:31Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - SymmNeRF: Learning to Explore Symmetry Prior for Single-View View
Synthesis [66.38443539420138]
単一画像からのオブジェクトの新規なビュー合成の問題について検討する。
既存の手法は、単一ビュービュー合成の可能性を実証している。
ニューラル放射場(NeRF)に基づくフレームワークであるSymphNeRFを提案する。
論文 参考訳(メタデータ) (2022-09-29T14:35:07Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
量子ニューラルネットワーク(QNN)は、現代の量子マシンの力を発揮する。
ハンドクラフト対称アンサーゼを持つQNNは、一般に非対称アンサーゼを持つものよりも訓練性が高い。
本稿では,QNNのグローバル最適収束を定量化するために,実効量子ニューラルネットワークカーネル(EQNTK)を提案する。
論文 参考訳(メタデータ) (2022-08-30T08:17:55Z) - SNeS: Learning Probably Symmetric Neural Surfaces from Incomplete Data [77.53134858717728]
我々はニューラルレイディアンスフィールド(NeRF)のようなニューラルリコンストラクションとレンダリングの最近の進歩の強みの上に構築する。
我々は3次元形状と材料特性にソフト対称性の制約を適用し,光,アルベド色,反射率に分解された外観を有する。
保存されていない領域を高い忠実度で再構成し、高品質な新しいビュー画像を作成することができることを示す。
論文 参考訳(メタデータ) (2022-06-13T17:37:50Z) - On the Importance of Asymmetry for Siamese Representation Learning [53.86929387179092]
シームズネットワークは、2つの並列エンコーダと概念的に対称である。
ネットワーク内の2つのエンコーダを明確に区別することで,非対称性の重要性について検討する。
非対称設計による改善は、より長いトレーニングスケジュール、複数の他のフレームワーク、より新しいバックボーンに一般化されている。
論文 参考訳(メタデータ) (2022-04-01T17:57:24Z) - Machine-learning hidden symmetries [0.0]
本稿では,新しい座標系にのみ現れる隠れ対称性を自動検出する手法を提案する。
その中心となる考え方は、ある偏微分方程式の違反として非対称性を定量化し、すべての可逆変換の空間上のそのような違反を数値的に最小化し、可逆ニューラルネットワークとしてパラメータ化することである。
論文 参考訳(メタデータ) (2021-09-20T17:55:02Z) - Encoding Involutory Invariance in Neural Networks [1.6371837018687636]
ある状況では、ニューラルネットワーク(NN)は、基礎となる物理対称性に従うデータに基づいて訓練される。
本研究では、関数がパリティまでのインボリュート線型/ファイン変換に対して不変な特別な対称性について検討する。
数値実験により,提案モデルが与えられた対称性を尊重しながらベースラインネットワークより優れていたことが示唆された。
また,本手法を水平/垂直反射対称性を持つデータセットに対する畳み込みNN分類タスクに適用する手法も提案されている。
論文 参考訳(メタデータ) (2021-06-07T16:07:15Z) - Finding Symmetry Breaking Order Parameters with Euclidean Neural
Networks [2.735801286587347]
我々は、対称性同変ニューラルネットワークがキュリーの原理を支持し、多くの対称性関連科学的な疑問を単純な最適化問題に表すのに使用できることを示した。
これらの特性を数学的に証明し、ユークリッド対称性同変ニューラルネットワークを訓練し、対称性を破る入力を学習し、正方形を長方形に変形させ、ペロブスカイトのオクタヘドラ傾斜パターンを生成する。
論文 参考訳(メタデータ) (2020-07-04T17:24:21Z) - Detecting Symmetries with Neural Networks [0.0]
ニューラルネットワークの埋め込み層における構造を広範囲に活用する。
我々は、対称性が存在するかどうかを特定し、入力中の対称性の軌道を特定する。
この例では、グラフの観点で新しいデータ表現を示す。
論文 参考訳(メタデータ) (2020-03-30T17:58:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。