論文の概要: Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction
- arxiv url: http://arxiv.org/abs/2103.06727v1
- Date: Thu, 11 Mar 2021 15:21:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 01:53:20.293557
- Title: Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction
- Title(参考訳): 解釈可能な車両状態予測のためのハイブリッド物理とディープラーニングモデル
- Authors: Alexandra Baier and Zeyd Boukhers and Steffen Staab
- Abstract要約: 深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
- 参考スコア(独自算出の注目度): 75.1213178617367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physical motion models offer interpretable predictions for the motion of
vehicles. However, some model parameters, such as those related to aero- and
hydrodynamics, are expensive to measure and are often only roughly approximated
reducing prediction accuracy. Recurrent neural networks achieve high prediction
accuracy at low cost, as they can use cheap measurements collected during
routine operation of the vehicle, but their results are hard to interpret. To
precisely predict vehicle states without expensive measurements of physical
parameters, we propose a hybrid approach combining deep learning and physical
motion models including a novel two-phase training procedure. We achieve
interpretability by restricting the output range of the deep neural network as
part of the hybrid model, which limits the uncertainty introduced by the neural
network to a known quantity. We have evaluated our approach for the use case of
ship and quadcopter motion. The results show that our hybrid model can improve
model interpretability with no decrease in accuracy compared to existing deep
learning approaches.
- Abstract(参考訳): 物理運動モデルは、車両の動きの解釈可能な予測を提供する。
しかし、空気力学や流体力学に関連するいくつかのモデルパラメータは測定に費用がかかり、予測精度を略して近似するだけである。
リカレントニューラルネットワークは、車両のルーチン操作中に収集された安価な測定値を使用することができるため、低コストで高い予測精度を達成するが、その結果は解釈が難しい。
物理パラメータの高価な測定をせずに車両の状態を正確に予測するために,新しい二相訓練法を含む深層学習モデルと物理運動モデルを組み合わせたハイブリッド手法を提案する。
ニューラルネットワークがもたらす不確実性を既知の量に制限するハイブリッドモデルの一部として、ディープニューラルネットワークの出力範囲を制限することにより、解釈可能性を実現します。
船舶とクアッドコプターの動作のユースケースに対するアプローチを評価しました。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
関連論文リスト
- Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
本研究では,流体力学応用における物理原理に基づく純粋深層学習モデルとハイブリッドモデルの一般化能力と堅牢性について検討する。
3つの自己回帰モデルを比較した。畳み込み自己エンコーダと畳み込みLSTM、変分自己エンコーダ(VAE)とConvLSTMと適切な分解(POD)とLSTM(POD-DL)を組み合わせたハイブリッドモデルである。
VAEおよびConvLSTMモデルは層流を正確に予測する一方で、ハイブリッドPOD-DLモデルは層流と乱流の双方において他のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-04-27T12:43:02Z) - GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction [3.031375888004876]
車両軌道予測のためのGRANP(Graph Recurrent Attentive Neural Process)という新しいモデルを提案する。
GRANPには、決定論的パスと遅延パスを持つエンコーダと、予測のためのデコーダが含まれている。
我々は,GRANPが最先端の結果を達成し,不確実性を効率的に定量化できることを示す。
論文 参考訳(メタデータ) (2024-04-09T05:51:40Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
人間の軌道予測は人間の行動を理解し予測し、社会ロボットから自動運転車への応用を可能にする。
モデルフリー手法は予測精度が優れているが説明可能性に欠ける一方、モデルベース手法は説明可能性を提供するが、よく予測できない。
BNSP-SFMは,11種類の最先端手法と比較して,予測精度を最大50%向上することを示す。
論文 参考訳(メタデータ) (2023-07-04T16:45:21Z) - Evaluation of Differentially Constrained Motion Models for Graph-Based
Trajectory Prediction [1.1947990549568765]
本研究では,予測課題に対する数値解法と組み合わせた各種動作モデルの性能について検討する。
この研究は、低階積分子モデルのようなより単純なモデルは、正確な予測を達成するために、より複雑な、例えばキネマティックモデルよりも好まれることを示している。
論文 参考訳(メタデータ) (2023-04-11T10:15:20Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - Embedded training of neural-network sub-grid-scale turbulence models [0.0]
ディープニューラルネットワークモデルの重みは、制御フロー方程式と共に最適化され、サブグリッドスケールの応力のモデルを提供する。
トレーニングは勾配降下法で行われ、随伴ナビエ-ストークス方程式を用いてモデル重みのエンドツーエンドの感度を速度場に与える。
論文 参考訳(メタデータ) (2021-05-03T17:28:39Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。