論文の概要: Causal Markov Boundaries
- arxiv url: http://arxiv.org/abs/2103.07560v1
- Date: Fri, 12 Mar 2021 22:49:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-18 09:21:57.354161
- Title: Causal Markov Boundaries
- Title(参考訳): Causal Markov境界
- Authors: Sofia Triantafillou and Fattaneh Jabbari and Greg Cooper
- Abstract要約: 観測データを用いて特徴選択と効果推定を改善する方法を紹介します。
本論文では,マルコフ境界の概念を治療成果ペアに拡張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature selection is an important problem in machine learning, which aims to
select variables that lead to an optimal predictive model. In this paper, we
focus on feature selection for post-intervention outcome prediction from
pre-intervention variables. We are motivated by healthcare settings, where the
goal is often to select the treatment that will maximize a specific patient's
outcome; however, we often do not have sufficient randomized control trial data
to identify well the conditional treatment effect. We show how we can use
observational data to improve feature selection and effect estimation in two
cases: (a) using observational data when we know the causal graph, and (b) when
we do not know the causal graph but have observational and limited experimental
data. Our paper extends the notion of Markov boundary to treatment-outcome
pairs. We provide theoretical guarantees for the methods we introduce. In
simulated data, we show that combining observational and experimental data
improves feature selection and effect estimation.
- Abstract(参考訳): 最適な予測モデルにつながる変数を選択することを目的とした機械学習では、機能選択が重要な問題である。
本稿では,介入前変数からの介入後結果予測のための特徴選択に着目する。
我々は、特定の患者の結果を最大化する治療を選択することを目標とする医療設定に動機付けられているが、条件付き治療効果を適切に識別する十分なランダム化制御試験データを持っていないことが多い。
a)因果グラフを知っているときに観測データを使用し、(b)因果グラフを知らないが、観察的かつ限定的な実験データを持っている場合である。
本稿では,マルコフ境界の概念を治療成果対に拡張する。
我々は導入する手法を理論的に保証する。
シミュレーションデータでは,観測データと実験データを組み合わせることで特徴選択と効果推定が向上することを示す。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
我々は,音楽のシーケンスなどの実践的な状況において,潜在目的に基づくデータポイントの選択的包摂が一般的である,と論じる。
選択構造はパラメトリックな仮定や介入実験なしで識別可能であることを示す。
また、他の種類の依存関係と同様に、選択構造を検知し、識別するための証明可能な正当性アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-29T20:56:34Z) - Causal thinking for decision making on Electronic Health Records: why
and how [0.0]
データ駆動決定には因果思考が必要である。
実生活の患者記録から有効な意思決定を支援するための,ステップバイステップのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T08:17:00Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Treatment Outcome Prediction for Intracerebral Hemorrhage via Generative
Prognostic Model with Imaging and Tabular Data [18.87414111429906]
脳内出血は2番目に一般的で致命的な脳梗塞である。
医学的進歩にもかかわらず、ICHの治療効果を予測することは依然として課題である。
モデルは、非ランダム化制御試験から収集された観測データに基づいて訓練される。
論文 参考訳(メタデータ) (2023-07-24T14:57:40Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
不均一な治療効果を推定することは、多くの領域において重要な問題である。
現在、現存するほとんどの作品は観測データにのみ依存している。
本稿では、大量の観測データと少量のランダム化データを組み合わせることで、不均一な処理効果を推定する。
論文 参考訳(メタデータ) (2022-02-25T18:59:54Z) - To Impute or not to Impute? -- Missing Data in Treatment Effect
Estimation [84.76186111434818]
我々は,MCM(Mixed Con founded missingness)と呼ばれる新しい欠損機構を同定し,ある欠損度が治療選択を判断し,他の欠損度が治療選択によって決定されることを示した。
本研究は,全てのデータを因果的に入力すると,不偏推定を行うために必要な情報を効果的に除去するので,処理効果のモデルが貧弱になることを示す。
私たちのソリューションは選択的計算であり、CMMからの洞察を使って、どの変数をインプットすべきで、どの変数をインプットすべきでないかを正確に知らせる。
論文 参考訳(メタデータ) (2022-02-04T12:08:31Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
患者予後に対する介入の効果を推定することは、パーソナライズされた医療の重要な側面の1つである。
時間から時間までのデータは、治療最適化にはほとんど使われない。
我々は、治療特異的な半パラメトリックコックス損失と治療バランスの深いディープニューラルネットワークを組み合わせたBITESというアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-05T10:39:31Z) - Double machine learning for sample selection models [0.12891210250935145]
本稿では,サンプル選択や帰属によるサブポピュレーションに対してのみ結果が観察される場合の個別分散処理の評価について考察する。
a)Neyman-orthogonal, Duubly robust, and efficient score function, which suggests the robustness of treatment effect Estimation to moderate regularization biases in the machine learning based Estimation of the outcome, treatment, or sample selection model and (b) sample splitting ( or cross-fitting) to prevent overfitting bias。
論文 参考訳(メタデータ) (2020-11-30T19:40:21Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。