論文の概要: Modelling Human Kinetics and Kinematics during Walking using
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2103.08125v1
- Date: Mon, 15 Mar 2021 04:01:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 01:37:05.706393
- Title: Modelling Human Kinetics and Kinematics during Walking using
Reinforcement Learning
- Title(参考訳): 強化学習による歩行時の運動と運動のモデル化
- Authors: Visak Kumar
- Abstract要約: 実世界の人間の運動に匹敵する3次元歩行運動をシミュレーションにより自動生成する手法を開発した。
本手法は, 異なる運動構造と歩行特性を持つヒト-サブジェクトをまたいでよく一般化することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we develop an automated method to generate 3D human walking
motion in simulation which is comparable to real-world human motion. At the
core, our work leverages the ability of deep reinforcement learning methods to
learn high-dimensional motor skills while being robust to variations in the
environment dynamics. Our approach iterates between policy learning and
parameter identification to match the real-world bio-mechanical human data. We
present a thorough evaluation of the kinematics, kinetics and ground reaction
forces generated by our learned virtual human agent. We also show that the
method generalizes well across human-subjects with different kinematic
structure and gait-characteristics.
- Abstract(参考訳): 本研究では,現実の人間の動作に匹敵するシミュレーションで3次元歩行運動を生成する自動手法を開発した。
本研究の核心は,環境力学の変動に頑健なまま,高次元運動スキルを習得する深層強化学習手法の活用である。
本手法は,実世界のバイオメカニカル・ヒューマン・データに適合するために,ポリシー学習とパラメータ識別を繰り返す。
我々は,学習した仮想人体エージェントが生み出すキネマティクス,運動学,地中反応力の徹底的な評価を行った。
また, この手法は, 異なる運動構造と歩行特性を持つヒト-サブジェクトをまたいでよく一般化することを示した。
関連論文リスト
- Learning Multimodal Latent Dynamics for Human-Robot Interaction [19.803547418450236]
本稿では,ヒト-ヒトインタラクション(HHI)から協調型人間-ロボットインタラクション(HRI)を学習する方法を提案する。
本研究では,隠れマルコフモデル(HMM)を変分オートエンコーダの潜在空間として用いて,相互作用するエージェントの結合分布をモデル化するハイブリッドアプローチを考案する。
ユーザが私たちのメソッドを,より人間らしく,タイムリーで,正確なものと認識し,他のベースラインよりも高い優先度でメソッドをランク付けすることが分かりました。
論文 参考訳(メタデータ) (2023-11-27T23:56:59Z) - CG-HOI: Contact-Guided 3D Human-Object Interaction Generation [29.3564427724612]
テキストから動的3次元人-物体相互作用(HOI)を生成する最初の方法であるCG-HOIを提案する。
意味的に豊かな人間の動きは、しばしば孤立して起こるので、人間と物体の両方の動きを相互依存的にモデル化する。
我々は,接触に基づく人間と物体の相互作用が現実的かつ物理的に妥当なシーケンスを生成することを示す。
論文 参考訳(メタデータ) (2023-11-27T18:59:10Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
物理学に基づくヒューマノイド制御のための総合的な運動スキルを含む普遍的な運動表現を提案する。
まず、大きな非構造運動データセットから人間の動きをすべて模倣できる動き模倣機を学習する。
次に、模倣者から直接スキルを蒸留することで、動作表現を作成します。
論文 参考訳(メタデータ) (2023-10-06T20:48:43Z) - Deep state-space modeling for explainable representation, analysis, and
generation of professional human poses [0.0]
本稿では,人間の動作を説明可能な表現にするための3つの新しい手法を紹介する。
トレーニングされたモデルは、専門家のフルボディのデキスタリティ分析に使用される。
論文 参考訳(メタデータ) (2023-04-13T08:13:10Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
現代の深層学習に基づく運動合成アプローチは、合成された運動の物理的妥当性をほとんど考慮していない。
テスト時に物理指向の動作補正を行うシステムSkeleton2Humanoid'を提案する。
挑戦的なLaFAN1データセットの実験は、物理的妥当性と精度の両方の観点から、我々のシステムが先行手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-09T16:15:34Z) - Robot Skill Adaptation via Soft Actor-Critic Gaussian Mixture Models [29.34375999491465]
現実の世界で行動する自律的エージェントにとっての中核的な課題は、その騒々しい知覚とダイナミクスに対処するために、そのスキルのレパートリーを適応させることである。
ロングホライズンタスクにスキルの学習を拡大するためには、ロボットは学習し、その後、構造化された方法でスキルを洗練する必要がある。
SAC-GMMは,動的システムを通じてロボットのスキルを学習し,学習したスキルを自身の軌道分布空間に適応させる,新しいハイブリッドアプローチである。
論文 参考訳(メタデータ) (2021-11-25T15:36:11Z) - Scene-aware Generative Network for Human Motion Synthesis [125.21079898942347]
シーンと人間の動きの相互作用を考慮した新しい枠組みを提案する。
人間の動きの不確実性を考慮すると、このタスクを生成タスクとして定式化する。
我々は、人間の動きと文脈シーンとの整合性を強制するための識別器を備えた、GANに基づく学習アプローチを導出する。
論文 参考訳(メタデータ) (2021-05-31T09:05:50Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
本研究では、実世界の二足歩行ロボットに、モーションキャプチャーデータから直接の動きを教えるための強化学習に基づく手法を提案する。
本手法は,シミュレーション環境下でのトレーニングから,物理ロボット上での実行へシームレスに移行する。
本研究では,ダイナミックウォークサイクルから複雑なバランスや手振りに至るまでの動作を内製したヒューマノイドロボットについて実演する。
論文 参考訳(メタデータ) (2021-05-26T00:49:37Z) - S3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling [103.65625425020129]
歩行者の形状、ポーズ、皮膚の重みを、データから直接学習する神経暗黙関数として表現します。
各種データセットに対するアプローチの有効性を実証し,既存の最先端手法よりも再現性が優れていることを示す。
論文 参考訳(メタデータ) (2021-01-17T02:16:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。