論文の概要: Whole brain Probabilistic Generative Model toward Realizing Cognitive
Architecture for Developmental Robots
- arxiv url: http://arxiv.org/abs/2103.08183v1
- Date: Mon, 15 Mar 2021 07:42:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 14:13:40.437493
- Title: Whole brain Probabilistic Generative Model toward Realizing Cognitive
Architecture for Developmental Robots
- Title(参考訳): 発達ロボットの認知的アーキテクチャ実現に向けた全脳確率遺伝モデル
- Authors: Tadahiro Taniguchi, Hiroshi Yamakawa, Takayuki Nagai, Kenji Doya,
Masamichi Sakagami, Masahiro Suzuki, Tomoaki Nakamura, Akira Taniguchi
- Abstract要約: 人間のような統合型人工認知システム、すなわち人工知能を構築することは、人工知能と開発ロボティクスの目標の1つだ。
本稿では、確率的生成モデル(PGM)を用いて人間の認知システムを完全に反映する認知アーキテクチャの開発について述べる。
- 参考スコア(独自算出の注目度): 8.941833998120904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building a humanlike integrative artificial cognitive system, that is, an
artificial general intelligence, is one of the goals in artificial intelligence
and developmental robotics. Furthermore, a computational model that enables an
artificial cognitive system to achieve cognitive development will be an
excellent reference for brain and cognitive science. This paper describes the
development of a cognitive architecture using probabilistic generative models
(PGMs) to fully mirror the human cognitive system. The integrative model is
called a whole-brain PGM (WB-PGM). It is both brain-inspired and PGMbased. In
this paper, the process of building the WB-PGM and learning from the human
brain to build cognitive architectures is described.
- Abstract(参考訳): 人間のような統合型人工認知システム、すなわち人工知能を構築することは、人工知能と開発ロボティクスの目標の1つだ。
さらに、人工認知システムが認知発達を達成することを可能にする計算モデルは、脳および認知科学にとって優れた基準となる。
本稿では、確率的生成モデル(PGM)を用いて人間の認知システムを完全に反映する認知アーキテクチャの開発について述べる。
積分モデルは全脳PGM (WB-PGM) と呼ばれる。
脳に触発され、PGMベースです。
本稿では,WB-PGMの構築プロセスと人間の脳から学習して認知アーキテクチャを構築する方法について述べる。
関連論文リスト
- Is artificial consciousness achievable? Lessons from the human brain [0.0]
進化の観点から,人工意識の発達に関する問題を分析する。
我々は、人間の脳の進化と、その意識との関係を参照モデルとして捉えている。
我々は,AIの認知処理における共通点と,人間の意識経験との違いを明確にすることを提案する。
論文 参考訳(メタデータ) (2024-04-18T12:59:44Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
本論は,神経科学と認知心理学の手法を検討することによって,人工知能の探求に貢献することを目的とする。
深層学習モデルによって達成された印象的な進歩にもかかわらず、抽象的推論と因果的理解にはまだ欠点がある。
論文 参考訳(メタデータ) (2024-01-03T09:46:36Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - BIASeD: Bringing Irrationality into Automated System Design [12.754146668390828]
我々は、人間と機械のコラボレーションの未来は、人間の認知バイアスをモデル化し、理解し、おそらく複製するAIシステムの開発を必要とすると主張している。
我々は、AIシステムの観点から既存の認知バイアスを分類し、3つの幅広い関心領域を特定し、私たちのバイアスをよりよく理解するAIシステムの設計のための研究の方向性を概説する。
論文 参考訳(メタデータ) (2022-10-01T02:52:38Z) - Intelligent problem-solving as integrated hierarchical reinforcement
learning [11.284287026711125]
生物学的エージェントにおける複雑な問題解決行動の開発は階層的認知機構に依存している。
本稿では,生物にインスパイアされた階層的なメカニズムを組み込むことにより,人工エージェントの高度な問題解決能力を実現する方法を提案する。
われわれの結果は、より洗練された認知にインスパイアされた階層型機械学習アーキテクチャの開発を導くことを期待している。
論文 参考訳(メタデータ) (2022-08-18T09:28:03Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
神経生物学的に妥当な2つの計算モデルを組み合わせた新しい認知アーキテクチャを提案する。
我々は、現代の機械学習技術の力を持つ認知アーキテクチャを開発することを目指している。
論文 参考訳(メタデータ) (2022-03-31T04:44:28Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - The whole brain architecture approach: Accelerating the development of
artificial general intelligence by referring to the brain [1.637145148171519]
個人が脳全体に対応するソフトウェアプログラムを設計することは困難である。
全脳アーキテクチャアプローチは、脳に触発されたAGI開発プロセスを脳の参照アーキテクチャを設計するタスクに分割する。
本研究では,仮想成分図を作成するための仮説構築手法である構造拘束型界面分解(scid)法を提案する。
論文 参考訳(メタデータ) (2021-03-06T04:58:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。